ÉèµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍÊÇSn£¬ÒÑÖªS3=9£¬S6=36£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚÕýÕûÊým¡¢k£¬Ê¹am£¬am+5£¬ak³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³ömºÍkµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©ÉèÊýÁÐ{bn}µÄͨÏʽΪbn=3n-2£®¼¯ºÏA={x|x=an£¬n¡ÊN*}£¬B={x|x=bn£¬n¡ÊN*}£®½«¼¯ºÏA¡ÈBÖеÄÔªËØ´ÓСµ½´óÒÀ´ÎÅÅÁУ¬¹¹³ÉÊýÁÐc1£¬c2£¬c3£¬¡£¬Çó{cn}µÄͨÏʽ£®
½â£º£¨1£©ÉèµÈ²îÊýÁÐ{a
n}µÄ¹«²îÊÇd£¬
ÓÉS
3=9ºÍS
6=36£¬
µÃ
£¬½âµÃa
1=1£¬d=2£¬
¡àa
n=a
1+£¨n-1£©d=2n-1£¬
¹ÊÊýÁÐ{a
n}µÄͨÏʽa
n=2n-1£®
£¨2£©´æÔÚÕýÕûÊým¡¢k£¬Ê¹a
m£¬a
m+5£¬a
k³ÉµÈ±ÈÊýÁУ®
¡ß´æÔÚÕýÕûÊým¡¢k£¬Ê¹a
m£¬a
m+5£¬a
k³ÉµÈ±ÈÊýÁУ¬
¡à£¨2m-1£©£¨2k-1£©=£¨2m+9£©
2£¬
¡à
=
=2m-1+20+
£¬
¼´
£¬m£¬kÊÇÕýÕûÊý£¬
¡à´æÔÚÕýÕûÊým£¬k£¬Ê¹a
m£¬a
m+5£¬a
k³ÉµÈ±ÈÊýÁУ¬
m£¬kµÄÖµ·Ö±ðÊÇm=1£¬k=61»òm=3£¬k=23£¬»òm=13£¬k=25£®
£¨3£©¡ßa
3k-2=2£¨3k-2£©-1=6k-5£¬
a
3k-1=2£¨3k-1£©-1=6k-3£¬
a
3k=2•3k-1=6k-1£¬
b
2k-1=3£¨2k-1£©-2=6k-5=a
3k-2£¬
b
2k=3•2k-2=6k-2∉A£¬
¡àa
3k-2=b
2k-1£¼a
3k-1£¼b
2k£¼a
3k£¬k=1£¬2£¬3£¬¡£¬
¼´µ±n=4k-3£¬k¡ÊN
*ʱ£¬c
n=6k-5£»
µ±n=4k-2£¬k¡ÊN
*ʱ£¬c
n=6k-3£»
µ±n=4k-1£¬k¡ÊN
*ʱ£¬c
n=6k-2£»
µ±n=4k£¬k¡ÊN
*ʱ£¬c
n=6k-1£®
¡à{c
n}µÄͨÏʽÊÇc
n=
£¬
¼´
£®
·ÖÎö£º£¨1£©ÉèµÈ²îÊýÁÐ{a
n}µÄ¹«²îÊÇd£¬ÓÉS
3=9ºÍS
6=36£¬µÃ
£¬ÓÉ´ËÄܹ»Çó³öÊýÁÐ{a
n}µÄͨÏʽ£®
£¨2£©´æÔÚÕýÕûÊým¡¢k£¬Ê¹a
m£¬a
m+5£¬a
k³ÉµÈ±ÈÊýÁУ®ÓÉa
m£¬a
m+5£¬a
k³ÉµÈ±ÈÊýÁУ¬Öª£¨2m-1£©£¨2k-1£©=£¨2m+9£©
2£¬½âµÃ
£¬m£¬kÊÇÕýÕûÊý£¬ÓÉ´ËÄÜÇó³öm£¬kµÄÖµ£®
£¨3£©ÓÉa
3k-2=2£¨3k-2£©-1=6k-5£¬a
3k-1=2£¨3k-1£©-1=6k-3£¬a
3k=2•3k-1=6k-1£¬b
2k-1=3£¨2k-1£©-2=6k-5=a
3k-2£¬b
2k=3•2k-2=6k-2∉A£¬ÓÉ´ËÄÜÇó³ö{c
n}µÄͨÏʽ£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓ뺯ÊýµÄ×ÛºÏÓ¦Ó㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£¬¶ÔÊýѧ˼άÄÜÁ¦ÒªÇó½Ï¸ß£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®