精英家教网 > 高中数学 > 题目详情

已知集合A={a1,a2,a3,…an},记和ai+aj(1≤i<j≤n)中所有不同值的个数为M(A).如当A={1,2,3,4}时,由1+2=3,1+3=4,1+4=2+3=5,2+4=6,3+4=7,得M(A)=5.对于集合B={b1,b2,b3,…,bn},若实数b1,b2,b3,…,bn成等差数列,则M(B)=  

考点:

等差数列的性质.

专题:

等差数列与等比数列.

分析:

把 bi+bj (1≤i<j≤m,i,j∈N)的值列成图表,严格利用题目给出的新定义,采用列举法来进行求解即可.

解答:

解:对于集合B={b1,b2,b3,…,bn},若实数b1,b2,b3,…,bn成等差数列,

则 bi+bj (1≤i<j≤m,i,j∈N)的值列成如下各列所示图表:

b1+b2,b2+b3,b3+b4,…,bn﹣1+bn

b1+b2,b2+b4,b3+b5,…,bn﹣2+bn

   …,…,…,

b1+bn﹣2,b2+bn﹣1,b3+bn

b1+bn﹣1,b2+bn

b1+bn

∵数列{bn}是等差数列,

∴b1+b4=b2+b3,b1+b5=b2+b4,…,b1+bn=b2+bn﹣1

∴第二列中只有 b2+bn 的值和第一列不重复,即第二列剩余一个不重复的值,

同理,以后每列剩余一个与前面不重复的值,

∵第一列共有n﹣1个不同的值,后面共有n﹣1列,

∴所有不同的值有:n﹣1+n﹣2=2n﹣3,故M(B)=2n﹣3,

故答案为 2n﹣3.

点评:

本题的属于新定义的创新题,主要考查等差数列的定义和性质,题目篇幅长,难于理解是解决这一问题的障碍,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A=a1,a2,…,an中的元素都是正整数,且a1<a2<…<an,对任意的x,y∈A,且x≠y,有|x-y|≥
xy
25

(Ⅰ)求证:
1
a1
-
1
an
n-1
25
;    
(Ⅱ)求证:n≤9;
(Ⅲ)对于n=9,试给出一个满足条件的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.
(Ⅰ)设集合P=2,4,6,8,Q=2,4,8,16,分别求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求证:l(A)=
n(n-1)2

(Ⅲ)l(A)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a1,a2,…,an}中的元素都是正整数,且a1<a2<…<an,对任意的x,y∈A,且x≠y,都有|x-y| ≥
xy
36

(1)求证:
1
a1
-
1
an
n-1
36
;(提示:可先求证
1
ai
-
1
ai+1
1
36
(i=1,2,…,n-1),然后再完成所要证的结论.)
(2)求证:n≤11;
(3)对于n=11,试给出一个满足条件的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的个数.
(1)设集合P={2,4,6,8},Q={2,4,8,16},分别求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a1,a2,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.
(Ⅰ)若集合A={2,4,8,16},则l(A)=
 

(Ⅱ)当n=108时,l(A)的最小值为
 

查看答案和解析>>

同步练习册答案