精英家教网 > 高中数学 > 题目详情

【题目】已知定义在[1,+∞)上的函数f(x)= 给出下列结论: ①函数f(x)的值域为(0,8];
②对任意的n∈N,都有f(2n)=23n
③存在k∈( ),使得直线y=kx与函数y=f(x)的图象有5个公共点;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正确命题的序号是(
A.①②③
B.①③④
C.①②④
D.②③④

【答案】C
【解析】解:①当1≤x<2时,f(x)=﹣8x(x﹣2)=﹣8(x﹣1)2+8∈(0,8], ②∵f(1)=8,
∴f(2n)= f(2n1)= f(2n2)= f(2n3)=…= f(20)= f(1)= ×8=23n , 故②正确,
③当x≥2时,f(x)= f( )∈0,4],故函数f(x)的值域为(0,8];故①正确,
当2≤x<4时,1≤ <2,则f(x)= f( )= [﹣8( ﹣1)2+8]=﹣4( ﹣1)2+4,
当4≤x<8时,2≤ <4,则f(x)= f( )= [﹣4( ﹣1)2+4]=﹣2( ﹣1)2+2
作出函数f(x)的图象如图:
作出y= x和y= x的图象如图,

当k∈( ),使得直线y=kx与函数y=f(x)的图象有3个公共点;故③错误,
④由分段函数的表达式得当x∈(2n , 2n+1)时,函数f(x)在(2n , 2n+1)上为单调递减函数,
则函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)(2n , 2n+1)”为真命题.,故④正确,
故选:C
①根据分段函数的表达式结合函数的最值进行求解判断,
②利用f(2n)= f(1)进行求解判断,
③作出函数f(x)和y=kx的图象,利用数形结合进行判断,
④根据分段函数的单调性进行判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为常数.

时,设函数,判断函数上是增函数还是减函数,并说明理由;

设函数,若函数有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量ξ的分布列为

ξ

﹣2

﹣1

0

1

2

3

P

若P(ξ2>x)= ,则实数x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求证:

2)若函数的图象与直线没有交点,求实数的取值范围;

3)若函数,则是否存在实数,使得的最小值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:

组别

候车时间

人数

[0,5)

2

[5,10)

6

[10,15)

4

[15,20)

2

[20,25]

1

(Ⅰ)求这15名乘客的平均候车时间;
(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;
(Ⅲ)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=xR).

1)证明:当a3时,fx)在R上是减函数;

2)若函数fx)存在两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)时,求函数的单调区间;

(2)时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数解析式;

(2)判断函数的奇偶性(给出结论即可);

(3)若方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为,第二次取出的小球标号为.

(1) 记事件表示“”, 求事件的概率

(2) 在区间内任取2个实数, 记的最大值为,求事件”的概率.

查看答案和解析>>

同步练习册答案