精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)若处的切线与直线平行,求的值;

2)讨论函数的单调区间;

3)若函数的图象与轴交于AB两点,线段AB中点的横坐标为,证明

【答案】12)详见解析(3)证明详见解析.

【解析】

1)首先求,根据解出的值;

2)由(1)得,分两种情况讨论函数的单调区间;

3)设出函数的图象与轴交于两点的横坐标,利用分析法和根据(2)的结论进行证明,根据要证明的结论和分析的过程,利用放缩法,换元法,构造函数法解答,再利用导数求出函数的最值,即可证明.

1

又因为的图象在处的切线与直线平行,

,即

解得:

(2)由(1)得

的定义域为

①当时,对任意

此时函数的单调递增区间为.

②当时,令,解得:

时,,当时,

此时,函数的单调递增区间是,单调递减区间是.

3)不妨设,且,由(2)知

于是要证明成立,只需证:,即

②,

-②得

故只需证明

即证明

即证明,变形为

,令

显然当时,,当且仅当

上是增函数,

时,总成立,命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】fx)=loga1+x+loga3x)(a0a≠1)且f1)=2

1)求a的值及fx)的定义域;

2)求fx)在区间[0,]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽样100名志原者的年龄情况如下表所示.

)频率分布表中的位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在岁的人数;

)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中年龄低于30的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的三个内角所对的边分别为

1)求的大小;

2)若为锐角三角形,求函数的取值范围;

3)现在给出下列三个条件:,试从中再选择两个条件以确定,求出所确定的的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在直角坐标系xOy中,设倾斜角为α的直线lt为参数)与曲线Cθ为参数)相交于不同的两点AB

)若α,求线段AB中点M的坐标;

)若|PA·PB|=|OP,其中P2),求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),经过变换后曲线变换为曲线.

1)在以为极点,轴的非负半轴为极轴(单位长度与直角坐标系相同)的极坐标系中,求的极坐标方程;

2)求证:直线与曲线的交点也在曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,且a3+2S677a10a510.

1)求数列{an}的通项公式;

2)数列{bn}满足:b11bnbn1ann+1n≥2),求数列{}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是各项均为正数的等比数列,且b1a11b3a4b1b2b3a3a4.

(1)求数列{an}{bn}的通项公式;

(2)cnanbn,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 fx)=a|sinx|+|cosx|)﹣sin2x1aR

1)写出函数 fx)的最小正周期(不必写出过程);

2)求函数 fx)的最大值;

3)当a1时,若函数 fx)在区间(0kπ)(kN*)上恰有2015个零点,求k的值.

查看答案和解析>>

同步练习册答案