A. | 1-$\frac{\sqrt{3}π}{6}$ | B. | 1-$\frac{\sqrt{3}π}{12}$ | C. | 1-$\frac{\sqrt{3}π}{9}$ | D. | 1-$\frac{\sqrt{3}π}{18}$ |
分析 先求出满足条件的正三角形ABC的面积,再求出满足条件正三角形ABC内的点到三角形的顶点A、B、C的距离均不小于1的图形的面积,然后代入几何概型公式即可得到答案.
解答 解:满足条件的正三角形ABC如下图所示:设边长为2,
其中正三角形ABC的面积S三角形=$\frac{\sqrt{3}}{4}$×4=$\sqrt{3}$.
满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域如图中阴影部分所示,其加起来是一个半径为1的半圆,
则S阴影=$\frac{1}{2}$π,
则使取到的点到三个顶点A、B、C的距离都大于1的概率是:P=1-$\frac{\sqrt{3}π}{6}$.
故选:A.
点评 本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{3}{4}$或$-\frac{4}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com