精英家教网 > 高中数学 > 题目详情

【题目】如图,在长方体中,的中点,的中点,为线段上一点,且满足的中点.

1)求证:平面

2)求三棱锥的体积;

3)求直线与直线所成角的余弦值.

【答案】1)见解析(23

【解析】

1)利用三角形的中位线和梯形的中位线的性质得到线线平行,利用面面平行的判定定理证得平面平面,利用面面平行的性质得到平面

2)将三棱锥的顶点和底面转换,之后利用椎体体积公式求得结果;

3)利用异面直线所成角的定义,得到(或其补角)是目标,之后应用余弦定理求得结果.

1)作的中点,连接.

的中点,

的中位线,.

的中点,

为梯形的中位线,∴.

在平面中,

在平面中,

∴平面平面

平面,∴平面.

2

.

故所求三棱锥的体积为.

3)连接,因为在长方体中,

,又点在直线上,

所以直线与直线所成角即为所成的角,

即是(或其补角).

中,.

由余弦定理得

故所求直线与直线所成角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②上是增函数或者减函数.

1)若在区间上是闭函数,求常数的值;

2)找出所有形如的函数(都是常数),使其在区间上是闭函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点,轴为正半轴为极轴建立极坐标系.已知曲线的极坐标方程为 ,直线与曲线相交于两点,直线过定点且倾斜角为交曲线两点.

(1)把曲线化成直角坐标方程,并求的值;

(2)若成等比数列,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为的直线与椭圆交于两点,线段的中点为

(1)证明:

(2)设的右焦点,上一点,.证明:成等差数列,并求该数列的公差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体ABCDEF中,四边形ABFE为正方形,GAB的中点,.

1)求证:平面CDEF

2)求平面ACD与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C的中心在原点,左焦点,长轴为.

1)求椭圆C的标准方程;

2)过左焦点的直线交曲线CAB两点,过右焦点的直线交曲线CCD两点,凸四边形ABCD为菱形,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)椭圆 )的上顶点为上的一点,以为直径的圆经过椭圆的右焦点

1)求椭圆的方程;

2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】fx)=etxt0),过点Pt0)且平行于y轴的直线与曲线Cyfx)的交点为Q,曲线C过点Q的切线交x轴于点R,若S1f1)),则PRS的面积的最小值是_____

查看答案和解析>>

同步练习册答案