精英家教网 > 高中数学 > 题目详情

【题目】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:

连续剧

连续剧播放时长/min

广告播放时长/min

收视人次/万人

70

5

60

60

5

25

电视台每周安排的甲、乙连续剧的总播放时长不多于,广告的总播放时长不少于,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用,表示每周计划播出的甲、乙两套连续剧的次数,要使总收视人次最多,则电视台每周播出甲、乙两套连续剧的次数分别为(

A.6,3B.5,2C.4,5D.2,7

【答案】A

【解析】

根据已知条件列出应满足的条件,注意,表示每周计划播出的甲、乙两套连续剧的次数,根据已知条件列出应满足的条件,画出可行域,设总收视人次为万,则目标函数为,利用线性规划找出最优解.

解:依题意得,目标函数为,

画出可行域如下图所示,由图可知,目标函数在点处取得最大值.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系x-O-y中,已知曲线E:(t为参数)

(1)在极坐标系O-x中,若A、B、C为E上按逆时针排列的三个点,△ABC为正三角形,其中A点的极角θ=,求B、C两点的极坐标;

(2)在直角坐标系x-O-y中,已知动点P,Q都在曲线E上,对应参数分别为t=α与t=2α (0<α<2π),M为PQ的中点,求 |MO| 的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:对于其定义域内的任何一个自变量,都有函数值,则称函数上封闭.

1)若下列函数:的定义域为,试判断其中哪些在上封闭,并说明理由.

2)若函数的定义域为,是否存在实数,使得在其定义域上封闭?若存在,求出所有的值,并给出证明;若不存在,请说明理由.

3)已知函数在其定义域上封闭,且单调递增,若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥SABCD中,四边形ABCD为平行四边形,BAACSAADSCCD

Ⅰ)求证:ACSB

Ⅱ)若ABACSA=3,E为线段BC的中点,F为线段SB上靠近B的三等分点,求直线SC与平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100,水温与时间近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度与时间近似满足函数的关系式为 为常数), 通常这种热饮在40时,口感最佳,某天室温为时,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为

A. 35 B. 30

C. 25 D. 20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中直线与抛物线C交于AB两点,且

C的方程;

D为直线外一点,且的外心MC上,求M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

)当时,求曲线在点处的切线方程.

)求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C1(a>b>0)的离心率为,椭圆上动点P到一个焦点的距离的最小值为3(1)

(1) 求椭圆C的标准方程;

(2) 已知过点M(0,-1)的动直线l与椭圆C交于AB两点,试判断以线段AB为直径的圆是否恒过定点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】渔民出海打鱼,为了保证获得的鱼新鲜,鱼被打上岸后,要在最短的时间内将其分拣、冷藏,若不及时处理,打上来的鱼很快地失去新鲜度(以鱼肉内的三甲胺量的多少来确定鱼的新鲜度.三甲胺是一种挥发性碱性氨,是氨的衍生物,它是由细菌分解产生的.三甲胺量积聚就表明鱼的新鲜度下降,鱼体开始变质进而腐败).已知某种鱼失去的新鲜度与其出海后时间(分)满足的函数关系式为.若出海后10分钟,这种鱼失去的新鲜度为10%,出海后20分钟,这种鱼失去的新鲜度为20%,那么若不及时处理,打上来的这种鱼在多长时间后开始失去全部新鲜度(已知,结果取整数)(

A.33分钟B.40分钟C.43分钟D.50分钟

查看答案和解析>>

同步练习册答案