精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=lnx.
(Ⅰ)y=kx与f(x)相切,求k的值;
(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+$\frac{a-1}{x}$-1恒成立.

分析 (Ⅰ)求出函数的导数,设出切点坐标,求出k的值即可;
(Ⅱ)问题转化为ax+$\frac{a-1}{x}$-lnx≥1恒成立,当a≥1时,记h(x)=ax+$\frac{a-1}{x}$-lnx,根据函数的单调性求出h(x)的最小值,从而证出结论即可.

解答 (Ⅰ)解:由f(x)=lnx,得:f′(x)=$\frac{1}{x}$,
设切点坐标为(x0,y0),
则$\left\{\begin{array}{l}{{y}_{0}=l{nx}_{0}}\\{k=\frac{1}{{x}_{0}}}\\{{y}_{0}={kx}_{0}}\end{array}\right.$,解得:k=$\frac{1}{e}$…..(5分)
(Ⅱ)证明:只需证f(x)-g(x)≥1,
即ax+$\frac{a-1}{x}$-lnx≥1恒成立,
当a≥1时,记h(x)=ax+$\frac{a-1}{x}$-lnx,
则在(0,+∞)上,h(x)≥1,
h′(x)=$\frac{(ax+a-1)(x-1)}{{x}^{2}}$,…..(9分)
∵a≥1,x>0,∴ax+a-1>0,
x∈(0,1)时,h′(x)<0,h(x)单调递减;
x∈(1,+∞)时,h′(x)>0,h(x)单调递增
∴h(x)min=h(1)=2a-1,
∵a≥1,∴2a-1≥1,即h(x)≥1恒成立…..(12分)

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=$\left\{\begin{array}{l}{x+2,x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,则f(f(-2))=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知sinθ+cosθ=2sinα,sin2θ=2sin2β,则(  )
A.cosβ=2cosαB.cos2β=2cos2αC.cos2β=2cos2αD.cos2β=-2cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东70°,则灯塔A与灯塔B之间的距离为(  )
A.$\sqrt{3}$akmB.2akmC.$\sqrt{5}$akmD.$\sqrt{7}$akm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列{an}满足a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),则$\sum_{i=1}^{100}$ai=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要从165名学生中抽取15人进行视力检查,现采用分层抽样法进行抽取,若这165名同学中,高中生为66人,则高中生中被抽取参加视力检查的人数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.抛物线C顶点在原点,焦点是圆x2+y2-4x=0的圆心
(Ⅰ)求抛物线C的方程
(Ⅱ)过点P(1,1)作直线l与抛物线C相交于A、B两点,且线段AB被点P平分,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则双曲线的离心率的取值范围是(  )
A.(1,+∞)B.$(1,1+\sqrt{2})$C.$(1,\sqrt{3})$D.$(1-\sqrt{2},1+\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知幂函数y=f(x)的图象过点($\sqrt{3}$,$\frac{1}{3}$),则f($\frac{1}{2}$)=4.

查看答案和解析>>

同步练习册答案