分析 对分类讨论,利用等差数列的前n项和公式即可得出.
解答 解:设数列{(-1)n-1n2}的前n项之和为Sn.
①当n=2k(k∈N*)为偶数时,a2k-1+a2k=(2k-1)2-(2k)2=-(4k-1),
∴Sn=-[3+…+(4k-1)]=-$\frac{k(3+4k-1)}{2}$=-$\frac{n(n+1)}{2}$.
②当n=2k-1(k∈N*)为奇数时,
Sn=Sn-1+(-1)n-1n2=-$\frac{n(n-1)}{2}$+(-1)n-1n2.
综上可得:Sn=$\left\{\begin{array}{l}{-\frac{n(n+1)}{2},n为偶数}\\{-\frac{n(n-1)}{2}+(-1)^{n-1}{n}^{2},n为奇数}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{-\frac{n(n+1)}{2},n为偶数}\\{-\frac{n(n-1)}{2}+(-1)^{n-1}{n}^{2},n为奇数}\end{array}\right.$.
点评 本题考查了等差数列的通项公式及其前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2≤m≤4 | B. | 0<m≤2 | C. | m>0 | D. | m≥2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{2}{3}$或4 | B. | 3或$-\frac{2}{3}$ | C. | $-\frac{2}{3}$ | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com