【题目】已知椭圆,,为椭圆的两个焦点,为椭圆上任意一点,且,构成等差数列,过椭圆焦点垂直于长轴的弦长为3.
(1)求椭圆的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆恒有两个交点,且,求出该圆的方程.
科目:高中数学 来源: 题型:
【题目】下列结论错误的是 ( )
A. 命题“若,则”的逆否命题为“若,则”
B. 命题“”的否定是
C. 命题“若,则”的逆命题为真命题
D. 命题“若,则且”的否命题是“若,则m≠0或n≠0”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由算得,
0.050 | 0.010 | 0.001 | |
| 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是 ( )
A. 在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别无关”
C. 有99.9%以上的把握认为“爱好该项运动与性别有关”
D. 有99.9%以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱椎中, 是棱上一点,且,底面是边长为2的正方形, 为正三角形,且平面平面,平面与棱交于点.
(1)求证:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆x2+y2-2y-1=0关于直线y=x对称的圆的方程是 ( )
A. (x-1)2+y2=2 B. (x+1)2+y2=2 C. (x-1)2+y2=4 D. (x+1)2+y2=4
【答案】A
【解析】圆 的标准方程为,所以圆心为(0,1),半径为,圆心关于直线的对称点是(1,0),所以圆x2+y2-2y-1=0关于直线y=x对称的圆的方程是,选A.
点睛:本题主要考查圆关于直线的对称的圆的方程,属于基础题。解答本题的关键是求出圆心关于直线的对称点,两圆半径相同。
【题型】单选题
【结束】
8
【题目】已知双曲线的离心率为,焦点是, ,则双曲线方程为 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某个调查小组在对人们的休闲方式的一次调查中,共调查了150人,其中男性45人,女性55人。女性中有35人主要的休闲方式是室内活动,另外20人主要的休闲方式是室外运动;男性中15人主要的休闲方式是室内活动,另外30人主要的休闲方式是室外运动。
参考数据:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)根据以上数据建立一个的列联表;
(2)能否在犯错误的概率不超过0.005的前提下认为休闲方式与性别有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知线段AB的端点B的坐标为(3,0),端点A在圆上运动;
(1)求线段AB中点M的轨迹方程;
(2)过点C(1,1)的直线m与M的轨迹交于G、H两点,求以弦GH为直径的圆的面积最小值及此时直线m的方程.
(3)若点C(1,1),且P在M轨迹上运动,求的取值范围.(O为坐标原点)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com