精英家教网 > 高中数学 > 题目详情
6.已知F1、F2是椭圆C1:$\frac{{x}^{2}}{4}$+y2=1与双曲线C2的两个公共焦点,P是C1,C2一个公共点.若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则C2的离心率是$\frac{\sqrt{6}}{2}$.

分析 由椭圆方程,求得其焦点坐标,设双曲线的标准方程,根据椭圆及双曲线的定义,且∠F1PF2=90°,利用勾股定理求得a的值,利用双曲线的离心率公式,即可求得C2的离心率.

解答 解:椭圆C1:$\frac{{x}^{2}}{4}$+y2=1,焦点在x轴上,c=$\sqrt{3}$,则|F1F2|=2$\sqrt{3}$,设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$,
∵|PF2|+|PF1|=4,|PF2|-|PF1|=2a,
∴|PF2|=2+a,|PF1|=2-a,
由$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则∠F1PF2=90°,
∴|AF1|2+|AF2|2=|F1F2|2
则(2-a)2+(2+a)2=(2$\sqrt{3}$)2
∴a=$\sqrt{2}$,
∴离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{\sqrt{2}}$=$\frac{\sqrt{6}}{2}$,
∴C2的离心率$\frac{\sqrt{6}}{2}$,
故答案为:$\frac{\sqrt{6}}{2}$.

点评 本题考查椭圆及双曲线的简单几何性质及定义,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.用五点作图法作出函数$y=cos({x+\frac{π}{6}}),x∈[{-\frac{π}{6},\frac{11π}{6}}]$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).
(1)若f(0)≤1,求a的取值范围;
(2)讨论f(x)的单调性;
(3)当a>2时,讨论f(x)+|x|在R上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=$\frac{1}{3}$x2+10x(万元);当年产量不小于80千件时,C(x)=51x+$\frac{10000}{x}$-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部销售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解下列不等式
(1)-x2+3x+4≥0
(2)x2+2x+(1-a)(1+a)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等差数列{an}前9项的和为27,a10=8,则a100=(  )
A.97B.98C.99D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C1:ρ=2cosθ,圆${C_2}:{ρ^2}-2\sqrt{3}ρsinθ+2=0$,把两条曲线化成直角坐标方程,并判断这两条曲线的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=$\sqrt{3}$|PB|,则点P的轨迹所包围的图形的面积等于$\frac{27π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在建立两个变量y与x的回归模型中,分别选择了四个不同的模型,它们的相关指数如下,其中拟合效果最好的模型是(  )
A.模型1的相关指数R2为0.98B.模型2的相关指数R2为0.80
C.模型3的相关指数R2为0.54D.模型4的相关指数R2为0.35

查看答案和解析>>

同步练习册答案