精英家教网 > 高中数学 > 题目详情
求值:lg4+lg25+4 
1
2
-(4-π)0
考点:对数的运算性质
专题:计算题
分析:根据对数的运算性质以及分数指数幂的运算法则,零次幂的定义进行计算即可.
解答: 解:原式=lg(4×25)+
4
-1
=lg100+2-1
=2+2-1
=3.
点评:本题考查了对数的运算性质,分数指数幂的运算法则以及零次幂的概念应用问题,解题时应细心计算,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(x)=f(x-10),当0≤x≤10时,f(x)=x3-2x,则函数f(x)在区间[0,2014]上的零点个数为(  )
A、403B、402
C、401D、201

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2-a)(x-1)-2lnx.(a为常数)
(1)当a=0时,①求f(x)的单调增区间;②试比较f(m)与f(
1
m
)的大小;
(2)g(x)=ex-x+1,若对任意给定的x0∈(0,1],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若h(x)的单调减区间是(
1
2
,1),求实数a的值;
(2)若f(x)≥g(x)对于定义域内的任意x恒成立,求实数a的取值范围;
(3)设h(x)有两个极值点x1,x2,且x1∈(0,
1
2
).若h(x1)-h(x2)>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=1,公比为q的等比数列,
(Ⅰ)证明:kCnk=nCn-1k-1(k,n∈N*,k≤n)
(Ⅱ)计算:a1Cn1+(a1+a2)Cn2+(a1+a2+a3)Cn3+…+(a1+a2+…+an)Cnn(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a2=3,a4=7.
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

过去的2013年,我国多地区遭遇了雾霾天气,引起口罩热销.某品牌口罩原来每只成本为6元.售价为8元,月销售5万只.
(1)据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润=月销售总收入-月总成本),该口罩每只售价最多为多少元?
(2)为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价x(x≥9)元,并投入
26
5
(x-9)万元作为营销策略改革费用.据市场调查,每只售价每提高0.5元,月销售量将相应减少
0.2
(x-8)2
万只.则当每只售价x为多少时,下月的月总利润最大?并求出下月最大总利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

求直线y=x+1被双曲线x2-
y2
4
=1截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)对任意x,y∈R均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-
2
3

(1)判断并证明f(x)在R上的单调性;
(2)求f(x)在[-3,3]上的最值.

查看答案和解析>>

同步练习册答案