精英家教网 > 高中数学 > 题目详情

【题目】己知( + n的展开式中,第五项与第七项的二项式系数相等.
(I )求该展开式中所有有理项的项数;
(II)求该展开式中系数最大的项.

【答案】解:(Ⅰ)∵( + n的展开式中,第五项与第七项的二项式系数相等∴Cn4=Cn6 , ∴n=10,
∴( + 10的通项为Tr+1=2rC10rx
∵5﹣ r=5(1﹣ r),
分别令r=0,2,4,6,8,10,
∴展开式中所有有理项的项数第1,3,5,7,9,11项
(Ⅱ)二项式共有11项,最中间一项的系数最大,即为第6项
即为26C106x10=13440x10
【解析】(Ⅰ)根据( + n的展开式中,第五项与第七项的二项式系数相等,得到n=10,写出二项式的通项公式,再求出有理项,(Ⅱ)由已知二项式可知展开式由11项,则中间一项的二项式系数最大,由此求得二项式系数最大的项

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2,
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线l1:kx+y=0和直线l2:kx+y+b=0(b>0),射线OC的一个法向量为 =(﹣k,1),点O为坐标原点,且k≥0,直线l1和l2之间的距离为2,点A、B分别是直线l1、l2上的动点,P(4,2),PM⊥l1于点M,PN⊥OC于点N;

(1)若k=1,求|OM|+|ON|的值;
(2)若| |=8,求 的最大值;
(3)若k=0,AB⊥l2 , 且Q(﹣4,﹣4),试求|PA|+|AB|+|BQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作(其中元件1,2,3正常工作的概率都为 ),设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一个周期内的图象如图所示.

(1)求函数f(x)的解析式;
(2)求g(x)=f(3x+ )﹣1在[﹣ ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数

I求函数上零点的个数;

II,若函数上是增函数.

求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理中是演绎推理的序号为(
A.由金、银、铜、铁可导电,猜想:金属都可导电
B.猜想数列 {an}的通项公式为 (n∈N+
C.半径为r圆的面积S=πr2 , 则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x﹣a)2+(y﹣b)2=r2 , 推测空间直角坐标系中球的方程为(x﹣a)2+(y﹣b)2+(z﹣c)2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}的前4项和为10,且a2 , a3 , a7成等比数列.
(Ⅰ)求通项公式an
(Ⅱ)设bn= ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】向量 =(1,2), =(x,1),
(1)当 +2 与2 平行时,求x;
(2)当 +2 与2 垂直时,求x.

查看答案和解析>>

同步练习册答案