精英家教网 > 高中数学 > 题目详情
11.小明同学早晨从家到学校上学,他需要乘坐520路公交车,已知小明到达车站的时间是随机的,该路公交车每15分钟来一趟,则小明在公交车站上等车时间少于10分钟的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

分析 由题意知本题是一个几何概型,试验包含的所有事件是公交车每15分钟发一趟车,而满足条件的事件是等车时间少于10分钟,根据几何概型概率公式得到结果.

解答 解:由题意知本题是一个几何概型,
试验包含的所有事件是公交车每15分钟发一趟车,时间长度是15,
而满足条件的事件是等车时间少于10分钟,时间长度是10,
由几何概型概率公式得到P=$\frac{10}{15}$=$\frac{2}{3}$,
故选:C.

点评 本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足不等式组$\left\{\begin{array}{l}{y≥x}\\{x+y-6≤0}\\{2x-y-2≥0}\end{array}\right.$,且z=2x+y的最小值为m,最大值为n,则m+n=(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{m}$=1的一个焦点坐标为(3,0),则m=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数f(x)=xsinx,当${x_1},{x_2}∈[-\frac{π}{2},\frac{π}{2}]$时,f(x1)>f(x2)成立,下列结论正确的是(  )
A.x1>x2B.x1>|x2|C.x1<x2D.x${\;}_{1}^{2}$>x${\;}_{2}^{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知i是虚数单位,若$z({1-\frac{1}{2}i})=\frac{1}{2}i$,则|Z|=(  )
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知y=e${\;}^{arctan\sqrt{2x}}$,则y′=e${\;}^{arctan\sqrt{2x}}$×$\frac{\sqrt{2x}}{2x(1+2x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=3${\;}^{-{x}^{2}+ax}$在[$\frac{1}{2}$,1]上单调递增,则a的取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆$C:{x^2}+{y^2}+2\sqrt{2}x-10=0$,点$A(\sqrt{2},0)$,P是圆上任意一点,线段AP的垂直平分线l和半径CP相交于点Q.
(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;
(Ⅱ)直线$y=kx+\sqrt{2}$与点Q的轨迹交于不同两点A和B,且$\overrightarrow{OA}•\overrightarrow{OB}=1$(其中O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$y=\sqrt{{{log}_{\frac{1}{2}}}{x^2}}$的单调递增区间是[-1,0).

查看答案和解析>>

同步练习册答案