精英家教网 > 高中数学 > 题目详情
设函数f(x)=
m
n
,其中向量
m
=(2cosx,1), 
n
=(cosx,
3
sin2x),x∈R

(1)求函数f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为
3
2
,求△ABC外接圆半径R.
分析:(1)直接把向量代入函数f(x)=
m
n
,利用二倍角公式以及两角和的正弦函数化为求f(x)=2sin(2x+
π
6
)+1
,利用正弦函数的单调减区间求函数的单调递减区间;利用周期公式求出函数f(x)的最小正周期.
(2)已知f(A)=2,求出A的值,通过b=1,△ABC的面积为
3
2
求出c,再用余弦定理推出△ABC为直角三角形,然后求△ABC外接圆半径R.
解答:解:(1)由题意得f(x)=2cos2x+
3
sin2x=cos2x+
3
sin2x+1=2sin(2x+
π
6
)+1

所以,函数f(x)的最小正周期为T=π,由
π
2
+2kπ≤2x+
π
6
2
+2kπ,k∈Z

函数f(x)的单调递减区间是[
π
6
+kπ,
3
+kπ]k∈Z
(6分)
(2)∵f(A)=2,∴2sin(2A+
π
6
)+1=2
,解得A=
π
3

又∵△ABC的面积为
3
2
,b=1
.得
1
2
bcsinA=
3
2
∴c=2

再由余弦定理a2=b2+c2-2bccosA,解得a=
3
∴c2=a2+b2,即△ABC为直角三角形.∴R=
c
2
=1
(l2分)
点评:本题是基础题,考查二倍角公式,两角和的正弦函数,三角函数的最值,周期,以及三角形的知识,是综合题,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(2cosx,-
3
sin2x)
n
=(cosx,1),设函数f(x)=
m
n
,x∈R.
(Ⅰ)求函数f(x)的最小正周期和单调递减区间;
(Ⅱ)若方程f(x)-k=0在区间[0,
π
2
]
上有实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=m-
13x+1
(x∈R):
(1)判断并证明函数f(x)的单调性
(2)是否存在实数m使函数f(x)为奇函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
m
n
,其中
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R.
(1)求f(x)的最小正周期和单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2,b=1△ABC的面积为
3
2
,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=m(1+sin2x)+cos2x,x∈R,且函数y=f(x)的图象经过点(
π4
,2).
(1)求实数m的值;
(2)求函数f(x)的最小值及此时x值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
m
n
,其中
m
=(cosx,
3
sin2x),
n
=(2cosx,1).
(1)求函数f(x)的单调增区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=2,a=
3
,b+c=3,求△ABC的面积.

查看答案和解析>>

同步练习册答案