精英家教网 > 高中数学 > 题目详情
(2010•南充一模)设函数f(x)是定义在x∈[-1,1]上的偶函数,函数g(x)的图象与f(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3
①求f(x)的解析式;
②是否存在正整数a,使f(x)的最大值为12?若存在求出a的值,若不存在说明理由.
分析:(1)先设f(x)的图象上任意点(x,f(x)),求出它关于直线x=1的对称点的坐标,由题意给出x的范围,再代入g(x)的解析式化简,再由偶函数的关系式求出另外一部分的解析式,最后用分段函数的形式表示出来;
(2)先假设存在,由偶函数的性质确定研究的对象,再求出函数的导数和临界点,根据临界点与区间的关系分类讨论,由导数与函数的关系判断函数的单调性,并求出函数的最值,再由题意列出方程求出a的值.
解答:解:(1)设f(x)的图象上任意点(x,f(x)),
它关于直线x=1的对称点(2-x,f(x))在g(x)的图象上,
当x∈[-1,0]时,2-x∈[2,3],且g(x)=2a(x-2)-4(x-2)3
∴f(x)=g(2-x)=-2ax+4x3
当x∈(0,1]时,-x∈[-1,0),∴f(-x)=2ax-4x3
又∵f(x)是定义在x∈[-1,1]上的偶函数,
∴f(x)=2ax-4x3
f(x)=
-2ax+4x3      (-1≤x≤0)
2ax-4x3          (0<x≤1)

(2)假设存在正整数a,使函数f(x)的最大值为12,
又f(x)为偶函数,故只需研究函数f(x)=2ax-4x3在x∈(0,1]的最大值
令f′(x)=2a-12x2=0,得x=
a
6
(a>0)

a
b
∈(0,1],即0<a≤6
时:
x∈(0,
a
6
],f′(x)>0,f(x)
单调递增,
x∈(
a
6
,1],f′(x)<0,f(x)
单调递减,
[f(x)]max=f(
a
6
)=2a×
a
6
-4(
a
6
)
3
<2a×
a
6
≤12

故此时不存在符合题意的a,
a
6
>1,即a>6
时,f′(x)>0在(0,1]上恒成立,
则f(x)在(0,1]上单调递增,
[f(x)]max=f(1)=2a-4
 

令2a-4=12,得a=8,
综上,存在a=8满足题意.
点评:本题考查了函数的对称性,奇偶性的综合应用,还考查了导数与函数性质之间的关系,涉及了分类讨论思想和存在性问题等,比较综合,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•南充一模)在直角坐标平面上,向量
OA
=(1,3)
OB
=(-3,1)
(O为原点)在直线l上的射影长度相等,且直线l的倾斜角为锐角,则l的斜率等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)函数f(x)=ax-1+logax(a>0且a≠1),在[1,2]上的最大值与最小值之和是a,则a的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)已知a,b,c都是正数,且a+2b+c=1,则
1
a
+
1
b
+
1
c
的最小值是
6+4
2
6+4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)已知两异面直线a,b所成的角为
π
3
,直线l分别与a,b所成的角都是θ,则θ的取值范围是
[
π
6
π
2
]
[
π
6
π
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)已知函数f(x)图象的两条对称轴x=0和x=1,且在x∈[-1,0]上f(x)单调递增,设a=f(3),b=f(
2
)
,c=f(2),则a,b,c的大小关系是(  )

查看答案和解析>>

同步练习册答案