【题目】已知函数
(1)当时,求函数的极值;
(2)求的单调区间.
【答案】(1)极大值为,极小值为;(2)详见解析.
【解析】
(1)由导函数的正负可确定的单调性,进而确定极大值为,极小值为,代入可求得结果;
(2)求得后,分别在、、和四种情况下确定的正负,由此可得单调区间.
(1)当时,,
,
当和时,;当时,,
在,上单调递增,在上单调递减,
在处取得极大值,在处取得极小值,
极大值为,极小值为.
(2)由题意得:,
①当时,
当时,;当时,,
的单调递减区间为,单调递增区间为;
②当时,
当和时,;当时,,
的单调递减区间为,单调递增区间为,;
③当时,在上恒成立,
的单调递增区间为,无单调递减区间;
④当时,
当和时,;当时,,
的单调递减区间为,单调递增区间为,;
综上所述:当时,的单调递减区间为,单调递增区间为;当时,的单调递减区间为,单调递增区间为,;当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为,.
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点坐标分别是、,并且经过点.
(1)求椭圆的方程;
(2)若直线与圆:相切,并与椭圆交于不同的两点、.当,且满足时,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】规定,其中,是正整数,且,这是组合数(、是正整数,且)的一种推广.
(1)求的值;
(2)设,当为何值时,取得最小值?
(3)组合数的两个性质:①.②.是否都能推广到(,是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在区间上有最大值和最小值,设.
(1)求,的值;
(2)若不等式在上有解,求实数的取值范围;
(3)若有三个不同的实数解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“克拉茨猜想”又称“猜想”,是德国数学家洛萨克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数,如果是偶数,就将它减半;如果为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.己知正整数经过6次运算后得到1,则的值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,,,,,,到如图所示的频率分布直方图.
(1)求图中的值及样本的中位数与众数;
(2)若从竞赛成绩在与两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.
(3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖, 得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com