精英家教网 > 高中数学 > 题目详情
已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的中垂线恒过定点Q(6,0),求此抛物线的方程.
分析:由抛物线的定义,知:|AF|+|BF|=x1+
p
2
+x2+
p
2
=x1+x2+p=8
,所以x1+x2=8-p.由点Q(6,0)在线段AB的垂直平分线上,知|QA|=|QB|,由此能求出抛物线的方程.
解答:解:由抛物线的定义可得:|AF|+|BF|=x1+
p
2
+x2+
p
2
=x1+x2+p=8

∴x1+x2=8-p.
∵点Q(6,0)在线段AB的垂直平分线上,
∴|QA|=|QB|即:(x1-6)2+y12=(x2-6)2+y22
又∵y12=2px1,y22=2px2
∴(x1-6)2+2px1=(x2-6)2+2px2
整理得:(x1-x2)(x1+x2-12+2p)=0.
∵x1≠x2∴x1+x2-12+2p=0即:x1+x2=12-2p=8-p
解得:p=4,
∴抛物线的方程为y2=8x.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),
(I)求t的值;
(II)若点P、Q是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点为F(
1
2
,0)
.(1)求抛物线C的方程; (2)已知直线y=k(x+
1
2
)
与抛物线C交于A、B 两点,且|FA|=2|FB|,求k 的值; (3)设点P 是抛物线C上的动点,点R、N 在y 轴上,圆(x-1)2+y2=1 内切于△PRN,求△PRN 的面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,焦点F(1,0).
(Ⅰ)求抛物线C的方程;
(Ⅱ)命题:“过抛物线C的焦点F作与x轴不垂直的任意直线l交抛物线于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB||FM|
为定值,且定值是2”.判断它是真命题还是假命题,并说明理;
(Ⅲ)试推广(Ⅱ)中的命题,写出关于抛物线的一般性命题(注,不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,以坐标轴为对称轴,且焦点F(2,0).
(1)求抛物线C的标准方程;
(2)直线l过焦点F与抛物线C相交与M,N两点,且|MN|=16,求直线l的倾斜角.

查看答案和解析>>

同步练习册答案