精英家教网 > 高中数学 > 题目详情

【题目】某校伙食长期以面粉和大米为主食,面食每100 g含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100 g含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?

【答案】解:设每盒盒饭需要面食x(百克),米食y(百克),
所需费用为S=0.5x+0.4y,
且x、y满足6x+3y≥8,4x+7y≥10,x≥0,y≥0,
由图可知,直线y=﹣ x+ S过A( )时,纵截距 S最小,即S最小.
故每盒盒饭为面食 百克,米食 百克时既科学又费用最少.

【解析】设每盒盒饭需要面食x(百克),米食y(百克),由已知我们可以给出x、y满足满足的条件,即约束条件,进行画出可行域,再使用角点法,即可求出目标函数S=0.5x+0.4y的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设两个非零向量 不共线.
(1)若 = + =2 +8 =3( ).求证:A,B,D三点共线;
(2)试确定实数k,使k + +k 共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,椭圆C过点A ,两个焦点为(﹣1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式ax2+bx+c>0的解集为{x|﹣ <x<2},则cx2+bx+a<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C 的对边分别是a,b,c,已知 b+acos C=0,sin A=2sin(A+C).
(1)求角C的大小;
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCD为空间四边形,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与(
A.AC,BD之一垂直
B.AC,BD都垂直
C.AC,BD都不垂直
D.AC,BD不一定垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题:
(1)求高一(1)班参加校生物竞赛人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在[80,100]之间的学生中任选两人进行某项研究,求至少有一人分数在[90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}中,a1=64,公比q≠1,a2 , a3 , a4又分别是某个等差数列的第7项,第3项,第1项.
(1)求an
(2)设bn=log2an , 求数列{|bn|}的前n项和Tn

查看答案和解析>>

同步练习册答案