精英家教网 > 高中数学 > 题目详情

【题目】盒中共有形状大小完全相同的5个球,其中有2个红球和3个白球.若从中随机取2个球,则概率为 的事件是(
A.都不是红球
B.恰有1个红球
C.至少有1个红球
D.至多有1个红球

【答案】B
【解析】解:盒中共有形状大小完全相同的5个球,其中有2个红球和3个白球, 从中随机取2个球,基本事件总数n= =10,
都不是红球的概率为: =
恰有1个红球的概率为: =
至少有1个红球的概率为:1﹣ =
至多有1个红球的概率为: + =
∴概率为 的事件是恰有1个红球.
故选:B.
从中随机取2个球,基本事件总数n=10,分别求出都不是红球的概率,恰有1个红球的概率,至少有1个红球的概率,至多有1个红球的概率,由此能求出概率为 的事件是恰有1个红球.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某鲜花店根据以往某品种鲜花的销售记录,绘制出日销售量的频率分布直方图,如图所示.将日销售量落入各组区间的频率视为概率,且假设每天的销售量相互独立.

(1)求在未来的连续4天中,有2天的日销售量低于100枝且另外2天不低于150枝的概率;

(2)用表示在未来4天里日销售量不低于100枝的天数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一直线l过直线l1:3x﹣y=3和直线l2:x﹣2y=2的交点P,且与直线l3:x﹣y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆心在x正半轴上的半径为 的圆C相切,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:BM⊥平面ADM;
(2)若点E是线段DB上的中点,求三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM的体积V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中,AD=1,CD=2,AC=
(Ⅰ)求cos∠CAD的值;
(Ⅱ)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】龙虎山花语世界位于龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖,玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自年春建成,试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.

某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在日赏花旺季对进园游客进行取样调查,从当日名游客中抽取人进行统计分析,结果如下:

年龄

频数

频率

4

合计

(I)完成表一中的空位①~④,并作答题纸中补全频率分布直方图,并估计日当日接待游客中岁以下的游戏的人数.

(II)完成表二,并判断能否有的把握认为在观花游客中“年龄达到岁以上”与“性别”相关;

(表二)

岁以上

岁以下

合计

男生

女生

合计

(参考公式: ,其中

(III)按分层抽样(分岁以上与岁以下两层)抽取被调查的位游客中的人作为幸运游客免费领取龙虎山内部景区门票,再从这人中选取人接受电视台采访,设这人中年龄在岁以上(含岁)的人数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax﹣(k﹣1)ax(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)= ,且g(x)=a2x+a2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算题
(1)已知cos( +x)= ,( <x< ),求 的值.
(2)若 是夹角60°的两个单位向量,求 =2 + =﹣3 +2 的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值,且导函数的极值点是的零点。(极值点是指函数取极值时对应的自变量的值)

求b关于a的函数关系式,并写出定义域;

证明:b>3a;

这两个函数的所有极值之和不小于,求a的取值范围。

查看答案和解析>>

同步练习册答案