分析 (1)推导出CD⊥AC,AB⊥DC,从而AB⊥平面BCD,由此能证明AB⊥BD.
(2)由VC-ABD=VD-ABC,能求出点C到平面ABD的距离.
解答 证明:(1)在Rt△ABC中,∵AB=BC=CD=2,AD=2$\sqrt{3}$,∠ABC=90°
∴$AC=\sqrt{A{B}^{2}+B{C}^{2}}$=2$\sqrt{2}$,
∵AC2+CD2=AD2,∴CD⊥AC,
又平面DAC⊥平面ABC,∴DC⊥平面ABC,∴AB⊥DC,
又AB⊥BC,BC∩DC=C,
∴AB⊥平面BCD,
又BD?平面BCD,∴AB⊥BD.
解:(2)∵VC-ABD=VD-ABC,
设点C到平面ABD的距离为h,
∴$\frac{1}{3}h•{S}_{△ABD}=\frac{1}{3}CD•{S}_{△ABC}$,
∵${S}_{△ABD}=2\sqrt{2}$,S△ABC=2,
解得h=$\sqrt{2}$,
∴点C到平面ABD的距离为$\sqrt{2}$.
点评 本题考查线线垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | (-∞,4) | B. | (-4,4) | C. | (-4,4] | D. | [-4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{3}$ | B. | $\frac{15}{7}$ | C. | $\frac{17}{7}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | $7+4\sqrt{3}$ | C. | $\frac{1}{3}$ | D. | $3+2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com