精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是奇函数,且当x<0时,f(x)=x2+3x+2.若当x∈[1,3]时,nf(x)≤m恒成立,则mn的最小值为(  )

A. B. 2

C. D.

【答案】A

【解析】

利用奇偶性求出函数在x>0时的解析式,得到当x∈[1,3]时函数的值域,即可得m,n的范围,确定出m-n的最小值

x>0,则-x<0.

f(x)是奇函数,且当x<0时,f(x)x23x2.

f(x)=-f(-x)=-[(-x)2+3(-x)+2]=-x2+3x-2.

∴当x[1,3]时,在上单调递增,在上单调递减

x时,f(x)max;当x=3时,f(x)min=-2.

∵当x∈[1,3]时,nf(x)≤m恒成立

mn≤-2,故mn.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)若曲线在点处的切线斜率为0,求a

(Ⅱ)若处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数kR),且满足f(﹣1)=f(1).

(1)求k的值;

(2)若函数y=fx)的图象与直线没有交点,求a的取值范围;

(3)若函数x[0,log23],是否存在实数m使得hx)最小值为0,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列(其中第一项是,接下来的项是,再接下来的项是,依此类推)的前项和为,下列判断:

的第项;②存在常数,使得恒成立;③;④满足不等式的正整数的最小值是.

其中正确的序号是( )

A.①③B.①④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程: 为参数),曲线的参数方程: 为参数),且直线交曲线两点.

(1)将曲线的参数方程化为普通方程,并求时, 的长度;

(2)巳知点,求当直线倾斜角变化时, 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,椭圆C的离心率是,抛物线E的焦点FC的一个顶点.

)求椭圆C的方程;

)设PE上的动点,且位于第一象限,E在点P处的切线C交与不同的两点AB,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.

)求证:点M在定直线上;

)直线y轴交于点G,记的面积为的面积为,求的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列方程组的解集:

12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上任意一点,ANPM,垂足为N , AEPB,垂足为E .

1)求证:平面PAM⊥平面PBM.

2)求证:是二面角A-PB-M的平面角.

查看答案和解析>>

同步练习册答案