精英家教网 > 高中数学 > 题目详情
已知等比数列{an}中,a2,a18是方程x2+6x+1=0的两根,则a7•a8•a9•a10•a11•a12•a13=
-1
-1
分析:由根与系数关系得到a2+a18=-6,a2a18=1,从而判断等比数列的偶数项均为负数,利用等比数列的性质进行运算.
解答:解:等比数列{an}中,a2,a18是方程x2+6x+1=0的两根,
所以a2+a18=-6,a2a18=1,
则a2<0,a18<0,
又a2a18=a7a13=a8a12=a9a11=a102
所以a10=-1.
则a7•a8•a9•a10•a11•a12•a13=-1.
故答案为-1.
点评:本题考查了等比数列的通项公式,考查了等比数列的运算性质,在等比数列中,若m,n,p,q,k∈N*,且
m+n=p+q=2k,则aman=apaq=ak2,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案