如图,四棱锥的底面是正方形,底面,,,点、分别为棱、的中点.
(1)求证:平面;
(2)求证:平面平面;
(3)求三棱锥的体积.
(1)详见解析;(2)详见解析;(3)三棱锥的体积为.
【解析】
试题分析:(1)取的中点,连接、,证明四边形为平行四边形,得到,再利用直线平面平行的判定定理得到平面;(2)先证明平面,利用(1)中的条件得到平面,再利用平面与平面垂直的判定定理证明平面平面,在证明平面的过程中,在等腰三角形中利用三线合一得到,通过证明平面得到,然后利用直线与平面垂直的判定定理即可证明平面;(3)利用题中的条件平面,在计算三棱锥的体积中,选择以点为顶点,所在平面为底面的三棱锥来计算其体积,则该三棱锥的高为,最后利用锥体的体积计算公式即可.
试题解析:(1)取的中点,连结、,
∴为的中位线,,
∵四边形为矩形,为的中点,
∴,,
∴四边形是平行四边形,,
又平面,平面,
∴平面;
(2) 底面,
,,又,,
平面, 又平面, ,
直角三角形中,,
为等腰直角三角形,,
是的中点,,又,平面,
,平面,
又平面, 平面平面;
(3)三棱锥即为三棱锥,
是三棱锥的高,
中,,,
三棱锥的体积,
.
考点:1.直线与平面平行;2.平面与平面垂直;3.等体积法求三棱锥的体积
科目:高中数学 来源: 题型:
(09年山东实验中学诊断三理)(13分)如图:四棱锥的底面是提醒,腰,平分且与垂直,侧面都垂直于底面,平面与底面成60°角
(1)求证:;
(2)求二面角的大小
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三第八次月考文科数学试卷 题型:解答题
如图,四棱锥的底面是平行四边形,平面,,,
点是上的点,且.
(Ⅰ)求证:;
(Ⅱ)求的值,使平面;
(Ⅲ)当时,求三棱锥与四棱锥的体积之比.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三上学期摸底理科数学 题型:解答题
((本小题满分14分)如图,四棱锥的底面是正方形,侧棱底面,,、分别是棱、的中点.
(1)求证:; (2) 求直线与平面所成的角的正切值
查看答案和解析>>
科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题
(本小题满分12 分)
如图,四棱锥的底面是边长为的菱形,
,平面,,为的中点,O为底面对角线的交点;
(1)求证:平面平面;
(2)求二面角的正切值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com