精英家教网 > 高中数学 > 题目详情

已知为常数,函数在区间上的最大值为,则实数的值为_____________.

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•昌平区一模)已知函数f(x)=lnx+
1x
+ax,x∈(0,+∞)
(a为实常数).
(1)当a=0时,求函数f(x)的最小值;
(2)若函数f(x)在[2,+∞)上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知函数f(x)=2aex+1,g(x)=lnx-lna+1-ln2,其中a为常数,e=2.718…,函数y=f(x)的图象与坐标轴交点处的切线为l1,函数y=g(x)的图象与直线y=1交点处的切线为l2,且l1∥l2
(Ⅰ)若对任意的x∈[1,5],不等式x-m>
x
f(x)-
x
成立,求实数m的取值范围.
(Ⅱ)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x.我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域的所有偏差都大于2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•静安区二模)某种洗衣机在洗涤衣服时,需经过进水、清洗、排水、脱水四个连续的过程.假设进水时水量匀速增加,清洗时水量保持不变.已知进水时间为4分钟,清洗时间为12分钟,排水时间为2分钟,脱水时间为2分钟.洗衣机中的水量y(升)与时间x(分钟)之间的关系如下表所示:
x 0 2 4 16 16.5 17 18
y 0 20 40 40 29.5 20 2
请根据表中提供的信息解答下列问题:
(1)试写出当x∈[0,16]时y关于x的函数解析式,并画出该函数的图象;
(2)根据排水阶段的2分钟点(x,y)的分布情况,可选用y=
a
x
+b
或y=c(x-20)2+d(其中a、b、c、d为常数),作为在排水阶段的2分钟内水量y与时间x之间关系的模拟函数.试分别求出这两个函数的解析式;
(3)请问(2)中求出的两个函数哪一个更接近实际情况?(写出必要的步骤)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数(其中e为自然对数)

求F(x)=h(x)的极值。

  (常数a>0),当x>1时,求函数G(x)的单调区

间,并在极值存在处求极值。

查看答案和解析>>

科目:高中数学 来源: 题型:

20.已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.

(Ⅰ)试确a,b的值;

(Ⅱ)讨论函数f(x)的单调区向;

(Ⅲ)若对任意x>0,不等式f(x)≥-2c2恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案