精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=logax(a>0,且a≠1),且f(3)-f(2)=1.
(1)若f(3m-2)<f(2m+5),求实数m的取值范围;
(2)求使$f({x-\frac{2}{x}})={log_{\frac{9}{4}}}\frac{49}{4}$成立的x的值.

分析 (1)由已知f(3)-f(2)=1求得a值,再由对数函数的单调性化f(3m-2)<f(2m+5)为一元一次不等式求实数m的取值范围;
(2)直接求解对数方程得答案.

解答 解:(1)由f(x)=logax(a>0,且a≠1),且f(3)-f(2)=1,得loga3-loga2=1,
∴loga$\frac{3}{2}$=1,即a=$\frac{3}{2}$,
∴f(x)=$lo{g}_{\frac{3}{2}}x$,则f(x)是增函数,
又f(3m-2)<f(2m+5),
∴0<3m-2<2m+5,解得$\frac{2}{3}$<m<7;
(2)由$f({x-\frac{2}{x}})={log_{\frac{9}{4}}}\frac{49}{4}$,得:$lo{g}_{\frac{3}{2}}$(x-$\frac{2}{x}$)=$lo{g}_{\frac{3}{2}}\frac{7}{2}$,
∴x-$\frac{2}{x}$=$\frac{7}{2}$,即2x2-7x-4=0,解得x=-$\frac{1}{2}$或x=4.

点评 本题考查对数不等式的解法,考查了对数函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m=(sin2x,cos2x),\overrightarrow n=(cos\frac{π}{4},sin\frac{π}{4})$,函数f(x)=$\sqrt{2}$$\overrightarrow{m}$•$\overrightarrow{n}$+2.
(1)求函数f(x)的最小正周期;
(2)将函数y=f(x)的图象向右平移$\frac{π}{24}$个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数g(x)的图象,求函数g(x)在[-π,π]上零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等比数列{an}中,S3=20,S6=60,则S9=140.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知两条不同的直线m,n和平面α,下列说法正确的是(  )
A.如果m?α,n?α,m、n是不在任何同一个平面内的直线,那么n∥α
B.如果m?α,n?α,m、n是不在任何同一个平面内的直线,那么n与α相交
C.如果m∥α,n∥α,m、n共面,那么m∥n
D.如果m?α,n∥α,m、n共面,那么m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)计算:${[{{{({3\frac{13}{81}})}^{-3}}}]^{\frac{1}{6}}}$-lg$\frac{1}{100}-{(ln\sqrt{e})^{-1}}$$+{0.1^{-2}}-{(2+\frac{10}{27})^{-\frac{2}{3}}}$$-{(\frac{1}{{2+\sqrt{3}}})^0}$$+{2^{-1-{{log}_2}\frac{1}{6}}}$
(2)已知tan(π-α)=-2; 求sin2(π+α)+sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\sqrt{1-x}+\sqrt{x}$的定义域为(  )
A.(-∞,1]B.[0,1]C.[0,+∞)D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-(a-2)x+a-4;
(1)若函数y=f(x)在区间[1,2]上的最小值为4-a,求实数a的取值范围;
(2)是否存在整数m,n,使得关于x的不等式m≤f(x)≤n的解集恰好为[m,n],若存在,求出m,n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若复数z满足$z+i=\frac{2-i}{i}$,则复数z的模为(  )
A.10B.$\sqrt{10}$C.4D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.两个线性相关变量满足如下关系:则y对x的回归方程是(  )
x23456
y2.23.85.56.57.0
A.$\widehat{y}$=0.87x+0.32B.$\widehat{y}$=3.42x-3.97C.$\widehat{y}$═1.23x+0.08D.$\widehat{y}$═2.17x+32.1

查看答案和解析>>

同步练习册答案