分析 (1)由已知f(3)-f(2)=1求得a值,再由对数函数的单调性化f(3m-2)<f(2m+5)为一元一次不等式求实数m的取值范围;
(2)直接求解对数方程得答案.
解答 解:(1)由f(x)=logax(a>0,且a≠1),且f(3)-f(2)=1,得loga3-loga2=1,
∴loga$\frac{3}{2}$=1,即a=$\frac{3}{2}$,
∴f(x)=$lo{g}_{\frac{3}{2}}x$,则f(x)是增函数,
又f(3m-2)<f(2m+5),
∴0<3m-2<2m+5,解得$\frac{2}{3}$<m<7;
(2)由$f({x-\frac{2}{x}})={log_{\frac{9}{4}}}\frac{49}{4}$,得:$lo{g}_{\frac{3}{2}}$(x-$\frac{2}{x}$)=$lo{g}_{\frac{3}{2}}\frac{7}{2}$,
∴x-$\frac{2}{x}$=$\frac{7}{2}$,即2x2-7x-4=0,解得x=-$\frac{1}{2}$或x=4.
点评 本题考查对数不等式的解法,考查了对数函数的单调性,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 如果m?α,n?α,m、n是不在任何同一个平面内的直线,那么n∥α | |
B. | 如果m?α,n?α,m、n是不在任何同一个平面内的直线,那么n与α相交 | |
C. | 如果m∥α,n∥α,m、n共面,那么m∥n | |
D. | 如果m?α,n∥α,m、n共面,那么m∥n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1] | B. | [0,1] | C. | [0,+∞) | D. | (-∞,0]∪[1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
A. | $\widehat{y}$=0.87x+0.32 | B. | $\widehat{y}$=3.42x-3.97 | C. | $\widehat{y}$═1.23x+0.08 | D. | $\widehat{y}$═2.17x+32.1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com