分析 将-x代入已知等式,利用函数f(x)、g(x)的奇偶性,得到关于f(x)与g(x)的又一个方程,将二者看做未知数解方程组,解得f(x)和g(x)的解析式.
解答 解:∵f(x)是偶函数,g(x)是奇函数,
∴g(-x)=-g(x),f(-x)=f(x),
令x取-x,代入f(x)+g(x)=$\frac{2}{2-x}$①,
可得f(-x)+g(-x)=$\frac{2}{2+x}$,
即f(x)-g(x)=f(-x)+g(-x)=$\frac{2}{2+x}$②,
由①②解得,f(x)=$\frac{4}{4-{x}^{2}}$,g(x)=$\frac{2x}{4-{x}^{2}}$.
点评 本题考查了函数奇偶性的性质的应用,以及列方程组法求函数的解析式.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,$\sqrt{2}$,$\sqrt{2}$) | B. | (1,1,$\sqrt{2}$) | C. | ($\sqrt{2}$,-$\sqrt{2}$,$\sqrt{2}$) | D. | ($\sqrt{2}$,$\sqrt{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com