精英家教网 > 高中数学 > 题目详情
15.已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)的零点个数;
(2)是否存在实数a,b,c,使得f(x)同时满足以下条件:
①对?x∈R,f(x-2)=f(-x);
②对?x∈R,0≤f(x)-x≤$\frac{1}{2}$(x-1)2?如果存在,求出a,b,c的值,如果不存在,请说明理由.

分析 (1)将x=-1代入得到关于a、b、c的关系式,再由△确定零点个数;
(2)假设存在a,b,c∈R使得条件成立,
由①可知函数f(x)的对称轴是x=-1,令最值为0,由此可知a=c;
由②知将x=1代入可求的a、c与b的值,最后验证成立即可.

解答 解:(1)二次函数f(x)=ax2+bx+c中,f(-1)=0,
所以a-b+c=0,即b=a+c;
又△=b2-4ac=(a+c)2-4ac=(a-c)2
当a=c时△=0,函数f(x)有一个零点;
当a≠c时,△>0,函数f(x)有两个零点;
(2)假设a,b,c存在,由①知抛物线的对称轴为x=-1,
所以-$\frac{b}{2a}$=-1,即b=2a;
不妨令f(x)的最值为0,
则$\frac{4ac{-b}^{2}}{4a}$=0,
即b2=4ac,
所以4a2=4ac,
得出a=c;
由②知对?x∈R,都有0≤f(x)-x≤$\frac{1}{2}$(x-1)2
不妨令x=1,可得0≤f(1)-1≤0,
即f(1)-1=0,
所以f(1)=1,
即a+b+c=1;
由$\left\{\begin{array}{l}{a+b+c=1}\\{b=2a}\\{a=c}\end{array}\right.$解得a=c=$\frac{1}{4}$,b=$\frac{1}{2}$;
当a=c=$\frac{1}{4}$,b=$\frac{1}{2}$时,f(x)=$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{1}{4}$=$\frac{1}{4}$(x+1)2,其顶点为(-1,0)满足条件①,
又f(x)-x=$\frac{1}{4}$(x+1)2,所以对?x∈R,都有0≤f(x)-x≤$\frac{1}{2}$(x+1)2,满足条件②.
所以存在a=$\frac{1}{4}$,b=$\frac{1}{2}$,c=$\frac{1}{4}$时,f(x)同时满足条件①、②.

点评 本题考查了函数的零点与函数恒成立问题,也考查了综合运用所学知识分析问题解决问题的能力,是综合性问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\frac{2-x}{x-1}$,则函数f(x)的递减区间是(-∞,1),(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P(x,y)满足条件:$\left\{\begin{array}{l}x≥0\\ x-y≥0\\ 2x+y-k≤0\end{array}\right.$,若z=x+3y的最大值为8,则k的值为(  )
A.-6B.6C.8D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{lo{g}_{2}x+1,1<x≤2}\end{array}\right.$,则f(2014)+f(2015)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C经过点(1,$\sqrt{3}$),圆心在直线y=x上,且被直线y=-x+2截得的弦长为2$\sqrt{2}$.
(1)求圆C的方程;
(2)若直线l过点($\frac{3}{2}$,0),与圆C交于P,Q两点,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=-2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=2.50.8,b=log2.50.8,c=sin2.5,则(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.写出命题“?x∈R,使得x2<0”的否定:?x∈R,均有x2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.程序框图如图所示,若输出的结果为-9,则程序框图中判断框内的x值可以是(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如表,假设三个科目的考试甲是否成绩合格相互独立.
  科目A 科目B 科目C
 甲 $\frac{2}{3}$ $\frac{1}{2}$ $\frac{3}{4}$
(Ⅰ)求甲至少有一个科目考试成绩合格的概率;
(Ⅱ)设甲参加考试成绩合格的科目数量为X.求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案