【题目】已知数列{an}的前n项和为Sn,且Sn=n(n+2)(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn,求数列{bn}的前n项和Tn.
【答案】(1)an=2n+1;(2)Tn.
【解析】
(1)由n=1时求得a1,当n≥2时,由Sn=n(n+2)(n∈N*)① ,
可得Sn﹣1=(n﹣1)(n+1)② ,由①﹣②得an=2n+1,再检验当n=1时是否适合,求得an;
(2)由(1)求得bn,再利用错位相减法求其前n项和Tn即可.
解:(1)由题知:当n=1时,有S1=1×3=3=a1;
当n≥2时,由Sn=n(n+2)(n∈N*)① ,
可得Sn﹣1=② ,由①﹣② 得an=2n+1,
又n=1时也适合,故an=2n+1;
(2)由(1)知bn,
∵Tn=357×()3+…+(2n+1)()n③,
∴35×()3+…+(2n+1)④,
由③﹣④可得:
,
所以Tn.
科目:高中数学 来源: 题型:
【题目】年前某市质监部门根据质量管理考核指标对本地的500家食品生产企业进行考核,然后通过随机抽样抽取其中的50家,统计其考核成绩(单位:分),并制成如下频率分布直方图.
(1)求这50家食品生产企业考核成绩的平均数(同一组中的数据用该组区间的中点值为代表)及中位数a(精确到0.01)
(2)该市质监部门打算举办食品生产企业质量交流会,并从这50家食品生产企业中随机抽取4家考核成绩不低于88分的企业发言,记抽到的企业中考核成绩在的企业数为X,求X的分布列与数学期望
(3)若该市食品生产企业的考核成绩X服从正态分布其中近似为50家食品生产企业考核成绩的平均数,近似为样本方差,经计算得,利用该正态分布,估计该市500家食品生产企业质量管理考核成绩高于90.06分的有多少家?(结果保留整数).
附参考数据与公式:
则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.
(1)求椭圆方程;
(2)若直线与椭圆交于另一点,且,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值:
若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制);
若这两条棱所在的直线平行,则;
若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).
(1)求的值;
(2)求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+1|﹣|2x﹣2|的最大值为M,正实数a,b满足a+b=M.
(1)求2a2+b2的最小值;
(2)求证:aabb≥ab.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥中,与均为等腰直角三角形,且,,为上一点,且平面.
(1)求证:;
(2)过作一平面分别交, , 于,,,若四边形为平行四边形,求多面体的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中某班共有40个学生,将学生的身高分成4组:平频率/组距,,,进行统计,作成如图所示的频率分布直方图.
(1)求频率分布直方图中的值和身高在内的人数;
(2)求这40个学生平均身高的估计值(同一组中的数据用该组区间的中点值为代表)(精确到0.01).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求直线的普通方程以及曲线C的参数方程;
(2)过曲线C上任意一点M作与直线的夹角为的直线,交于点N,求的最小值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com