精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn,且Snnn+2)(nN*).

1)求数列{an}的通项公式;

2)设bn,求数列{bn}的前n项和Tn.

【答案】1an2n+1;(2Tn.

【解析】

1)由n1时求得a1,当n2时,由Snnn+2)(nN*,

可得Sn1=(n1)(n+1,由an2n+1,再检验当n1时是否适合,求得an

2)由(1)求得bn,再利用错位相减法求其前n项和Tn即可.

解:(1)由题知:当n1时,有S11×33a1

n2时,由Snnn+2)(nN*,

可得Sn1,由an2n+1,

n1时也适合,故an2n+1

2)由(1)知bn,

Tn357×(3++2n+1)(n,

35×(3++2n+1,

可得:

,

所以Tn.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极大值点;

2)当时,若过点存在3条直线与曲线相切,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年前某市质监部门根据质量管理考核指标对本地的500家食品生产企业进行考核,然后通过随机抽样抽取其中的50家,统计其考核成绩(单位:分),并制成如下频率分布直方图.

1)求这50家食品生产企业考核成绩的平均数(同一组中的数据用该组区间的中点值为代表)及中位数a(精确到0.01

2)该市质监部门打算举办食品生产企业质量交流会,并从这50家食品生产企业中随机抽取4家考核成绩不低于88分的企业发言,记抽到的企业中考核成绩在的企业数为X,求X的分布列与数学期望

3)若该市食品生产企业的考核成绩X服从正态分布其中近似为50家食品生产企业考核成绩的平均数近似为样本方差,经计算得,利用该正态分布,估计该市500家食品生产企业质量管理考核成绩高于90.06分的有多少家?(结果保留整数).

附参考数据与公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,左、右焦点分别为,离心率为是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.

1)求椭圆方程;

2)若直线与椭圆交于另一点,且,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值:

若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制);

若这两条棱所在的直线平行,则

若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).

(1)求的值;

(2)求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x+1||2x2|的最大值为M,正实数ab满足a+bM

1)求2a2+b2的最小值;

2)求证:aabbab

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,均为等腰直角三角形,且上一点,且平面.

1)求证:

2)过作一平面分别交,若四边形为平行四边形,求多面体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中某班共有40个学生,将学生的身高分成4组:平频率/组距进行统计,作成如图所示的频率分布直方图.

1)求频率分布直方图中的值和身高在内的人数;

2)求这40个学生平均身高的估计值(同一组中的数据用该组区间的中点值为代表)(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为

1)求直线的普通方程以及曲线C的参数方程;

2)过曲线C上任意一点M作与直线的夹角为的直线,交于点N,求的最小值

查看答案和解析>>

同步练习册答案