精英家教网 > 高中数学 > 题目详情

已知四棱锥的底面为直角梯形,底面,且的中点.
⑴求证:直线平面
⑵⑵若直线与平面所成的角为,求二面角的余弦值.

⑴见解析;⑵1

解析试题分析:方法一:几何法证明求角.
⑴要证直线平面,需要在平面内找到一条与平行的直线.显然不容易找到;故考虑利用面面平行退出线面平行, 取的中点,构造平面,根据 ,可证.
⑵要求二面角,方法一:找到二面角的平面角,角的顶点在棱,角的两边在两个半平面内中,并且角的两边与棱垂直.取取的中点,连接就是所求角.
方法二:建立空间直角坐标系,利用向量证明,求角.
试题解析:
⑴证明:取的中点,则,故平面;
又四边形正方形,∴,故∥平面;
∴平面平面,
平面.
⑵由底面,得底面;
与平面所成的角为;
, ∴都是边长为正三角形,
的中点,则,且 .

为二面角的平面角;在中 

∴二面角的余弦值
方法二:⑴设,因为
∴以A为坐标原点如图建立空间直角坐标系,取的中点
则各点坐标为:;
,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以为边的平行四边形的面积;
(2)若|a|=,且a分别与垂直,求向量a的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,在棱上.

(1)求异面直线所成的角;
(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点

(1)证明平面
(2)证明平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为正方形,侧面底面为等腰直角三角形,且分别为底边和侧棱的中点.

(1)求证:∥平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BCD,使得平面BCD平面ABD.

(1)求证:C'D平面ABD;
(2)求直线BD与平面BEC'所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.

(1)设的中点,证明:平面;
(2)证明:在内存在一点,使平面,并求点,的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中点.

(1)求证:平面BED⊥平面SAB.
(2)求直线SA与平面BED所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCD­A1B1C1D1中,已知AB=4,AD=3,AA1=2,EF分别是棱ABBC上的点,且EBFB=1.
 
(1)求异面直线EC1FD1所成角的余弦值;
(2)试在面A1B1C1D1上确定一点G,使DG⊥平面D1EF.

查看答案和解析>>

同步练习册答案