已知四棱锥的底面为直角梯形,,,底面,且,是的中点.
⑴求证:直线平面;
⑵⑵若直线与平面所成的角为,求二面角的余弦值.
⑴见解析;⑵1
解析试题分析:方法一:几何法证明求角.
⑴要证直线平面,需要在平面内找到一条与平行的直线.显然不容易找到;故考虑利用面面平行退出线面平行, 取的中点,构造平面,根据 ,∥可证.
⑵要求二面角,方法一:找到二面角的平面角,角的顶点在棱,角的两边在两个半平面内中,并且角的两边与棱垂直.取取的中点,连接就是所求角.
方法二:建立空间直角坐标系,利用向量证明,求角.
试题解析:
⑴证明:取的中点,则,故平面;
又四边形正方形,∴∥,故∥平面;
∴平面平面,
∴平面.
⑵由底面,得底面;
则与平面所成的角为;
∴, ∴和都是边长为正三角形,
取的中点,则,且 .
∴为二面角的平面角;在中 ,,
∴
∴二面角的余弦值
方法二:⑴设,因为,,,
∴以A为坐标原点如图建立空间直角坐标系,取的中点,
则各点坐标为:,,,,,;
∴,,∴
科目:高中数学 来源: 题型:解答题
已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以,为边的平行四边形的面积;
(2)若|a|=,且a分别与,垂直,求向量a的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥的底面为正方形,侧面底面.为等腰直角三角形,且.,分别为底边和侧棱的中点.
(1)求证:∥平面;
(2)求证:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BCD,使得平面BCD平面ABD.
(1)求证:C'D平面ABD;
(2)求直线BD与平面BEC'所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.
(1)设是的中点,证明:平面;
(2)证明:在内存在一点,使平面,并求点到,的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中点.
(1)求证:平面BED⊥平面SAB.
(2)求直线SA与平面BED所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在长方体ABCDA1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分别是棱AB,BC上的点,且EB=FB=1.
(1)求异面直线EC1与FD1所成角的余弦值;
(2)试在面A1B1C1D1上确定一点G,使DG⊥平面D1EF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com