精英家教网 > 高中数学 > 题目详情

【题目】下列命题中正确的是(
A.若ξ服从正态分布N(0,2),且P(ξ>2)=0.4,则P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分条件
C.直线ax+y+2=0与ax﹣y+4=0垂直的充要条件为a=±1
D.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”

【答案】C
【解析】解:A.P(ξ>2)=0.4,则P(0<ξ<2)= ,故A错误,
B.由x2﹣x=0得x=1或x=0,则x=1是x2﹣x=0的充分不必要条件,故B错误,
C.直线ax+y+2=0与ax﹣y+4=0垂直的充要条件为a2﹣1=0,解得a=±1,故C正确,
D.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0且y≠0,则xy≠0,故D错误,
故选:C.
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出的结果是(
A.﹣2
B.
C.
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设0<a<1,已知函数f(x)= ,若对任意b∈(0, ),函数g(x)=f(x)﹣b至少有两个零点,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】届亚运会于日至日在中国广州进行,为了做好接待工作,组委会招募了名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余不喜爱.

根据以上数据完成以下列联表:


喜爱运动

不喜爱运动

总计


10


16


6


14

总计



30

(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?

(3)如果从喜欢运动的女志愿者中(其中恰有人会外语),抽取名负责翻译工作,则抽出的志愿者中人都能胜任翻译工作的概率是多少?

:K2=

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具城进行促销活动,促销方案是:顾客每消费满1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金1000元,某顾客购买一张价格为3400元的餐桌,得到3张奖券,设该顾客购买餐桌的实际支出为(元);

(1)求的所有可能取值;

(2)求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游为了解2015年国庆节期间参加某境外旅游线路的游客的人均购物消费情况,随机对50人做了问卷调查,得如下频数分布表:

人均购物消费情况

[0,2000]

(2000,4000]

(4000,6000]

(6000,8000]

(8000,10000]

额数

15

20

9

3

3

附:临界值表参考公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d.

(1)做出这些数据的频率分布直方图并估计次境外旅游线路游客的人均购物的消费平均值;
(2)在调查问卷中有一项是“您会资助失学儿童的金额?”,调查情况如表,请补全如表,并说明是否有95%以上的把握认为资助数额多于或少于500元和自身购物是否到4000元有关?

人均购物消费不超过4000元

人均购物消费超过4000元

合计

资助超过500元

30

资助不超过500元

6

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中

(1)求的长;

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台机器在一天内发生故障的概率为p.已知这台机器在3个工作日至少一天不发生故障的概率为0.999.

(1)求p;

(2)若这台机器一周5个工作日不发生故障,可获利5万元;发生一次故障任可获利2.5万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元.这台机器一周内可能获利的均值是多少?

查看答案和解析>>

同步练习册答案