精英家教网 > 高中数学 > 题目详情
(1)化简:
sin(2π-α)sin(π+α)cos(-π-α)
sin(3π-α)cos(π-α)

(2)求证:
cosx
1-sinx
=
1+sinx
cosx
分析:(1)利用三角函数的诱导公式与三角函数恒等式化简即可;
(2)利用作差法求得
cosx
1-sinx
-
1+sinx
cosx
=0即可证得原结论成立.
解答:解:(1)
sin(2π-α)sin(π+α)cos(-π-α)
sin(3π-α)cos(π-α)
=
-sinα•(-sinα)•(-cosα)
sinα•(-cosα)
=sinα;
  (2)证明:∵
cosx
1-sinx
-
1+sinx
cosx

cos2x-(1+sinx)(1-sinx)
(1-sinx)•cosx

=
cos2x-(1-sin2x)
(1-sinx)•cosx

=0.
cosx
1-sinx
=
1+sinx
cosx
点评:本题考查三角函数的诱导公式与三角函数恒等式的证明,考查转化思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知θ为第四象限角,tan(π+θ)=-2.
(1)化简
tan(π-θ)sin(
π
2
-θ)
cos(-θ-π)sin(-5π+θ)

(2)求(1)中式子的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:sin(2A+B)-2sinAcos(A+B)(2)求值:cos200(1-
3
tan500)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简f(α)=
sin(
π
2
-α)cos(2π-α)tan(-α+3π)
tan(π+α)sin(
π
2
+α)

(2)若tanα=3,求
4sinα-2cosα
5cosα+3sinα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:
sin(2π-α)sin(π+α)cos(-π-α)
sin(3π-α)•cos(π-α)

(2)求值  sin500(1+
3
tan100)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:
sin(2π-α)cos(π+α)cos(
11
2
π-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

(2)已知tanα=7,求下列各式的值.
sinα+cosα
2sinα-cosα
;  
②sin2α+sinαcosα+3cos2α.

查看答案和解析>>

同步练习册答案