精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD的底面是直角梯形,AB∥DC,∠DAB=90°,
PA⊥底面 ABCD,PA=AD=DC=
12
AB=1,M是PB的中点.
(1)求证:CM∥平面PAD;
(2)求证:BC⊥平面PAC.
分析:(1)取PA中点N,连MN,DN,通过证明四边形MNDC 是平形四边形,证明CM∥AD.
(2)取AB中点H,则四边形ADCH为正方形,证明BC⊥AC,PA⊥BC以及PA∩BC=A,推出BC⊥平面PAC.
解答:解:(1)取PA中点N,连MN,DN
∵MN是△PAB的中位线,所以MN平行且等于
1
2
AB
…(1分)
又∵DC平行且等于
1
2
AB
,∴MN平行且等于DC…(2分)
∴四边形MNDC 是平形四边形…(3分)
∴CM∥ND…(4分)
又∵ND?平面PAD,CM?平面PAD,∴CM∥平面PAD…(6分)
(2)取AB中点H,则四边形ADCH为正方形
∴BC2=CH2+HB2=2…(7分)
△ADC中,AC2=AD2+CD2=2…(8分)
∵AC2+BC2=4=AB2,∴BC⊥AC…(10分)
∵PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC…(11分)
又∵PA∩BC=A,∴BC⊥平面PAC…(12分)
点评:本题考查直线与直线的平行,直线与平面垂直的判定定理的应用,考查逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案