精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求函数上的最大值和最小值;

2)求证:当时,函数的图象在的下方.

【答案】1的最小值是,最大值是;(2)证明详见解析.

【解析】

试题(1)先求导数,确定导函数恒大于零,即得函数单调递增,最后根据单调性确定最值,(2)先作差函数,利用导数研究函数单调性,再根据单调性去掉函数最值,根据最大值小于零得证结论.

试题解析:(1)因为f(x)=x2+ln x所以

因为x>1时,f(x)>0,所以f(x)[1,e]上是增函数,

所以f(x)的最小值是f(1)=1,最大值是f(e)=1+e2.

(2)证明

所以

因为x>1,所以F(x)<0,所以F(x)(1,+)上是减函数,

所以.所以f(x)<g(x).

所以当x(1,+)时,函数f(x)的图象在的下方.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过双曲线的右支上一点,分别向圆和圆作切线,切点分别为,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

求函数的单调区间;

如果对于任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)令函数,若函数有且只有一个零点,试判断与3的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为,椭圆的长轴长与焦距之比为,过且斜率不为的直线交于两点.

(1)当的斜率为时,求的面积;

(2)若在轴上存在一点,使是以为顶点的等腰三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆柱底面半径为1,高为是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.将轴截面绕着轴逆时针旋转后,边与曲线相交于点.

1)求曲线的长度;

2)当时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数的图象,只需把函数的图象上所有的点(

A.向左平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)

B.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)

C.向左平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)

D.向右平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面是菱形,.

(I)证明:

(II)若,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是边长为的菱形,.

(1)证明:平面

(2)若求二面角 的余弦值.

查看答案和解析>>

同步练习册答案