精英家教网 > 高中数学 > 题目详情

【题目】奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式 的解集为( )
A.(﹣1,0)∪(1,+∞)
B.(﹣∞,﹣1)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

【答案】C
【解析】由函数的奇偶性可知
又∵奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,∴可画图如下,

由图可知: .
所以答案是:C.
【考点精析】利用函数奇偶性的性质对题目进行判断即可得到答案,需要熟知在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:
①y与x负相关且 =2.347x-6.423;②y与x负相关且 =-3.476x+5.648;
③y与x正相关且 =5.437x+8.493;④y与x正相关且 =-4.326x-4.578.
其中一定不正确的结论的序号是( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设y1 ,y2 ,其中a>0,且a≠1,试确定x为何值时,有:
(1)y1=y2
(2)y1>y2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足Sn=2n﹣an(n∈N*). (Ⅰ)计算a1 , a2 , a3 , a4 , 并由此猜想通项公式an
(Ⅱ)用数学归纳法证明(Ⅰ)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2+bx+c(a,b,c∈R),若函数y=f(x)ex在x=﹣1处取得极值,则下列图象不可能为y=f(x)的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性.
(1)f(x)=x2-|x|+1,x∈[-1,4];
(2)f(x)=
(3)f(x)=
(4)f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程x2+ax+2a=0有解;命题q:函数f(x)= 在R上是单调函数.
(1)当命题q为真命题时,求实数a的取值范围;
(2)当p为假命题,q为真命题时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)比较下列两组实数的大小: ① ﹣1与2﹣ ;②2﹣
(Ⅱ)类比以上结论,写出一个更具一般意义的结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)若函数 上是减函数,求实数 的取值范围;
(2)是否存在整数 ,使得 的解集恰好是 ,若存在,求出 的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案