精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的参数方程为 (α为参数,α∈[0,π]),直线l的极坐标方程为
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)P为曲线C上任意一点,Q为直线l任意一点,求|PQ|的最小值.

【答案】
(1)解:∵曲线C的参数方程为 (α为参数,α∈[0,π]),

∴曲线C的普通方程为(x﹣1)2+y2=1.(y≥0).

∵直线l的极坐标方程为

即ρsinθ﹣ρcosθ=4,

∴直线l的直角坐标方程为x﹣y+4=0.


(2)解:∵P为曲线C上任意一点,Q为直线l任意一点,

∴设P(1+cosα,sinα),α∈[0,π],

则P到直线l的距离:

d= =

∵α∈[0,π],∴当α= 时,dmin= =

∴|PQ|的最小值为


【解析】(1)曲线C的参数方程消去参数α,能求出曲线C的普通方程;直线l的极坐标方程转化为ρsinθ﹣ρcosθ=4,由此能求出直线l的直角坐标方程.(2)设P(1+cosα,sinα),α∈[0,π]),求出P到直线l的距离,结合三角函数的性质能求出|PQ|的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)满足:(1)f(x)+f(2﹣x)=0,(2)f(x﹣2)=f(﹣x),(3)在[﹣1,1]上表达式为f(x)= ,则函数f(x)与函数g(x)= 的图象区间[﹣3,3]上的交点个数为(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为 ,答对文科题的概率均为 ,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 具有性质对任意两数中至少有一个是该数列中的一项,现给出以下四个命题:

数列具有性质 数列具有性质

若数列具有性质,则;④若数列具有性质,则.其中真命题有(

A. ①③④ B. ②③④ C. ②③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (k∈R).
(1)求函数y=f(x)的单调区间;
(2)若k∈N*,且当x∈(1,+∞)时,f(x)>0恒成立,求k的最大值.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R 且周期为1的函数,在区间上, 其中集合D=,则方程f(x)-lgx=0的解的个数是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈(﹣∞,0),2x>3x;命题q:x∈(0, ),sinx>x,则下列命题为真命题的是(
A.p∧q
B.(¬p)∨q
C.(¬p)∧q
D.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 + =1(a>b>0)的离心率为 ,过椭圆上一点M作直线MA,MB交椭圆于A,B两点,且斜率分别为k1 , k2 , 若点A,B关于原点对称,则k1k2的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C: + =1,直线l: (t为参数)
(1)写出曲线C的参数方程,直线l的普通方程.
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

同步练习册答案