【题目】某地教育研究中心为了调查该地师生对“高考使用全国统一命题的试卷”这一看法,对该市区部分师生进行调查,先将调查结果统计如下:
赞成 | 反对 | 总计 | |
教师 | 120 | ||
学生 | 40 | ||
总计 | 280 | 120 |
(1)请将表格补充完整,若该地区共有教师30000人,以频率为概率,试估计该地区教师反对“高考使用全国统一命题的试卷”这一看法的人数;
(2)按照分层抽样从“反对”的人中先抽取6人,再从中随机选出3人进行深入调研,求深入调研中恰有1名学生的概率.
科目:高中数学 来源: 题型:
【题目】放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0 ,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=( )
A.5太贝克
B.75In2太贝克
C.150In2太贝克
D.150太贝克
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=1+ .
(Ⅰ)是否存在实数a的值,使f(x)为奇函数?若存在,求出a的值;若不存在,说明理由;
(Ⅱ)若a=1,t(2x+1)f(x)>2x﹣2对x∈R恒成立,求实数f(x)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)= 是定义在(﹣∞,+∞)上的奇函数,且f( )= .
(1)求实数a、b,并确定函数f(x)的解析式;
(2)判断f(x)在(﹣1,1)上的单调性,并用定义证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(﹣1,1)上的减函数f(x)且满足对任意的实数x,y都有f(x+y)=f(x)+f(y)
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)解关于x的不等式f(log2x﹣1)+f(log2x)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:关于x的不等式ax>1(a>0,a≠1)的解集是{x|x<0},命题q:函数y=lg(ax2-x+a)的定义域为R,如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+bx+1满足f(1+x)=f(1﹣x), .
(1)求函数f(x)的解析式;
(2)判断g(x)在[1,2]上的单调性并用定义证明你的结论;
(3)求g(x)在[1,2]上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com