精英家教网 > 高中数学 > 题目详情
已知数列{an}、{bn}、{cn}的通项公式满足bn=an+1-an,cn=bn+1-bn(n∈N*).若数列{bn}
是一个非零常数列,则称数列{an}是一阶等差数列;若数列{cn}是一个非零常数列,则称数列{an}是二阶等差数列.
(Ⅰ)试写出满足条件a1=1,b1=1,cn=1的二阶等差数列{an}的前五项;
(Ⅱ)求满足条件(Ⅰ)的二阶等差数列{an}的通项公式an
(Ⅲ)若数列{an}的首项a1=2,且满足cn-bn+1+3an=-2n+1(n∈N*),求数列{an}的通项公式.
分析:(1)根据数列的递推式分别求得a1,a2,a3,a4,a5=1的值.
(2)根据题意可知bn+1-bn=cn=1,an+1-an=bn=n,进而用叠加法求得bn和an
(3)根据题设条件整理可得bn-3an=2n+1,整理可得an+2n=4•4n-1=4n,进而判断出数列{an+2n}的首项为a1+2=4,公比为4的等比数列,求得数列的通项公式,进而求得an
解答:解:(Ⅰ)a1=1,
a2=b1+a1=2,b2=c1+b1=2
∴a3=b2+a2=4,同样的道理求得a4=7,a5=1
(Ⅱ)依题意bn+1-bn=cn=1,n=1,2,3
所以bn=(bn-bn-1)+(bn-1-bn-2)+(bn-2-bn-3)+…+(b2-b1)+b1
=1+1+1+1+…+1=n
又an+1-an=bn=n,n=1,2,3,
所以an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1=(n-1)+(n-2)+…+2+1+1=
n(n-1)
2
+1=
n2-n+2
2

(Ⅲ)由已知cn-bn+1+3an=-2n+1,可得bn+1-bn-bn+1+3an=-2n+1
即bn-3an=2n+1
整理得:an+1+2n+1=4(an+2n),
因而数列{an+2n}的首项为a1+2=4,公比为4的等比数列,
∴an+2n=4•4n-1=4n
即an=4n-2n
点评:本题主要考查了等比数列的性质.数列与不等式、函数等问题是综合考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案