精英家教网 > 高中数学 > 题目详情

【题目】为迎接日的“全民健身日”,某大学学生会从全体男生中随机抽取名男生参加米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于秒,则称为“好体能”.

(Ⅰ) 写出这组数据的众数和中位数;

(Ⅱ)要从这 人中随机选取人,求至少有人是“好体能”的概率;

(Ⅲ)以这 人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取人,记表示抽到“好体能”学生的人数,求的分布列及数学期望.

【答案】(1) 这组数据的众数和中位数分别是.

(2) .

(3)分布列见解析;.

【解析】分析:(Ⅰ)利用众数和中位数的定义写出这组数据的众数和中位数. (Ⅱ)利用古典概型求至少有人是“好体能”的概率. (Ⅲ)利用二项分布求的分布列及数学期望.

详解:(I)这组数据的众数和中位数分别是

(II)设求至少有人是“好体能”的事件为A,则事件A包含得基本事件个数为;

总的基本事件个数为

(Ⅲ) 的可能取值为

由于该校男生人数众多,故近似服从二项分布

,,

的分布列为

的数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是梯形,.

1)证明:平面平面

2)若与平面所成的角为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】首届中国国际进口博览会在2018年11月5日—10日在上海国家会展中心举办。会议期间,某公司欲采购东南亚某水果种植基地的水果,公司刘总经理与该种植基地的负责人陈老板商定一次性采购一种水果的采购价(元/吨)与采购量(吨)之间的函数关系的图象如图中的折线所示(不包含端点,但包含端点).

(Ⅰ)求之间的函数关系式;

(Ⅱ)已知该水果种植基地种植该水果的成本是2800元/吨,那么刘总经理的采购量为多少时,该水果基地在这次买卖中所获得利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数如果满足:对任意存在常数都有成立则称上的有界函数其中称为函数的一个上界已知函数

(1)若函数为奇函数求实数的值;

(2)在(1)的条件下求函数在区间上的所有上界构成的集合;

(3)若函数上是以5为上界的有界函数求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,平面平面 .

(Ⅰ)求证: 平面

(Ⅱ)点在线段上运动,设平面与平面所成锐二面角为,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角A﹣BC﹣C,有如下四个结论:
①AC⊥BD;②△ABC是等边三角形;
③AB与CD所成的角90°;④二面角A﹣BC﹣D的平面角正切值是
其中正确结论是 .(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,满足,数列满足,且是等比数列.

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知椭圆过点,且离心率为.

)求椭圆的方程;

为椭圆的左、右顶点,直线轴交于点,点是椭圆上异于

的动点,直线分别交直线两点.证明:恒为定值.

查看答案和解析>>

同步练习册答案