精英家教网 > 高中数学 > 题目详情

【题目】设等比数列{an}的前n项和为Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=|2n﹣5|an , 求数列{bn}的前n项和Tn

【答案】解:(Ⅰ)∵4S1 , 3S2 , 2S3成等差数列, ∴6S2=4S1+2S3
即6(a1+a2)=4a1+2(a1+a2+a3),
则:a3=2a2 , q=2,

(Ⅱ)当n=1,2时,T1=6,T2=10,
当n≥3,Tn=10+1×23+3×24+…+(2n﹣5)2n
2Tn=20+1×24+3×25+…+(2n﹣7)×2n+(2n﹣5)×2n+1
两式相减得:﹣Tn=﹣10+8+2(24+25+…+2n)﹣(2n﹣5)×2n+1
=﹣2+2× ﹣(2n﹣5)×2n+1
=﹣34+(7﹣2n)2n+1
∴Tn=34﹣(7﹣2n)2n+1

【解析】(Ⅰ)根据4S1 , 3S2 , 2S3成等差数列.根据等差中项6S2=4S1+2S3 , 化简整理求得q=2,写出通项公式;(Ⅱ)讨论当n=1、2时,求得T1=6,T2=10,写出前n项和,采用错位相减法求得Tn

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,
(1)求A的大小;
(2)若 ,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中:
(Ⅰ)求证:AC∥平面A1BC1
(Ⅱ)求证:平面A1BC1⊥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点F(1,0),动点P(异于原点)在y轴上运动,连接FP,过点P作PM交x轴于点M,并延长MP到点N,且
(1)求动点N的轨迹C的方程;
(2)若直线l与动点N的轨迹交于A、B两点,若 ,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+2ax(a为实数),且f(1)=
(1)求函数f(x)的解析式;
(2)判断函数f(x)的奇偶性并证明;
(3)判断函数f(x)在区间[0,+∞)的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点P,Q从点A(1,0)出发沿单位圆运动,点P按逆时针方向每秒钟转 弧度,点Q按顺时针方向每秒钟转 弧度,设P,Q第一次相遇时在点B,则B点的坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入了部分数据,如表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

2

﹣2

0


(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移 个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在R上的奇函数,且当x≥0时,f(x)=x2﹣(a+4)x+a.
(1)求实数a的值及f(x)的解析式;
(2)求使得f(x)=x+6成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: + =1(a>b>0)的离心率为 ,其左焦点到点P(2,1)的距离为 . (Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案