精英家教网 > 高中数学 > 题目详情

(本小题满分12分)为了了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:

(1)估计该校男生的人数;

(2)估计该校学生身高在170~185cm之间的概率;

(3)从样本中身高在180~190cm之间的男生中任选2人,

求至少有1人身高在185~190cm之间的概率。

 

【答案】

 

(1)400

(2)

(3)

【解析】解(1)由已知,抽取的学生人数为700=70(人)

又由统计图知,男生抽取了40人,女生抽取了30人,故男生抽取的比例为

故估计男生的人数为(人) …………………………………………3分

(2)由统计图知,男生身高在170~185的人数为14+13+4=31(人)

   女生身高在170~185的人数为3+1=4(人)

∴ 估计该校学生身高在170~185cm的概率为……………………..6分

(3)样本中身高在180~190cm之间的男生共有6人,其中4人身高在180~185cm,分别设这四人为1,2,3,4;还有两人身高在185~190cm, 分别设这两人为A、B。则从此6人中抽取两人,有(1,2)(1,3)(1,4)(1,A)(1,B)(2,3)(2,4)(2,A)(2,B)(3,4)(3,A)(3,B)(4,A)(4,B)(A,B)共15种可能结果,每种结果是等可能的,所以试验中包含15个基本事件。……………………………………………………………………………9分

设事件T:“至少有1人身高在185~190cm之间”……………………………...10分

则它包含(1,A)(1,B)(2,A)(2,B)(3,A)(3,B)(4,A)(4,B)(A,B)共9种基本事件, ∴

所以至少有一人身高在185~190cm之间的概率为        …………………..12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案