精英家教网 > 高中数学 > 题目详情
19.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则双曲线的离心率的取值范围是(  )
A.(1,+∞)B.$(1,1+\sqrt{2})$C.$(1,\sqrt{3})$D.$(1-\sqrt{2},1+\sqrt{2})$

分析 由过F1且垂直于x轴的直线与双曲线交于A、B两点可知△ABC为锐角三角形,△ABF2为锐角三角形只要∠AF2B为锐角即可,由此可知$\frac{{b}^{2}}{a}$<2c,从而能够推导出该双曲线的离心率e的取值范围.

解答 解:由题设条件可知△ABF2为等腰三角形,
若△ABF2是锐角三角形,
只要∠AF2B为锐角,
即∠AF2B<45°,
即AF1<F1F2即可;
当x=-c时,$\frac{{c}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,得y=±$\frac{{b}^{2}}{a}$,
设A(-c,$\frac{{b}^{2}}{a}$),
∴$\frac{{b}^{2}}{a}$<2c,
即2ac>c2-a2
得e2-2e-1<0
解出e∈(1,1+$\sqrt{2}$),
故选:B.

点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用.根据条件得到∠AF2B<45°是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知正项数列{an}满足,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N+).
(1)证明数列{$\frac{1}{{a}_{n}}$}为等差数列,并求数列{an}的通项公式;
(2)设bn=(-1)n•n•an•an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx.
(Ⅰ)y=kx与f(x)相切,求k的值;
(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+$\frac{a-1}{x}$-1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面内,一只蚂蚁从点A(-2,-3)出发,爬到y轴后又爬到圆(x+3)2+(y-2)2=2上,则它爬到的最短路程是(  )
A.5$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{26}$D.$\sqrt{26}$-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.调查某高中1000名学生的肥胖情况,得如表:
  偏瘦正常 肥胖 
 女生(人) 100163 
 男生(人) x 187 z
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15
(Ⅰ)求x的值
(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取100名,问应在肥胖学生中抽多少名?
(Ⅲ)已知y≥194,z≥193,求肥胖学生中男生不少于女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线x-2017=0的倾斜角为(  )
A.0B.$\frac{π}{3}$C.$\frac{π}{2}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.“双节”期间,高速公路车辆较多,某调查公司在一服务区从七座以下的小型汽车中按进服务区的先后每间隔50辆就抽取一辆的样本方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段;[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.
(1)求这40辆小型汽车车速的众数和中位数的估计值;
(2)若从车速在[60,70)内的车辆中任抽取2辆,求车速在[65,70)内的车辆恰有一辆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(I)证明:平面POC⊥平面PAD;
(II)若CD=$\sqrt{2}$,三棱锥P-ABD与C-PBD的体积分别为V1、V2,求证V1=2V2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设直线l1:mx-2my-6=0与l2:(3-m)x+my+m2-3m=0.
(1)若l1∥l2,求l1,l2之间的距离;
(2)若直线l2与两坐标轴的正半轴围成的三角形的面积最大,求直线l2的方程.

查看答案和解析>>

同步练习册答案