精英家教网 > 高中数学 > 题目详情
设集合M={x|-2≤x≤a}非空,N={y|y=
|x|
,x∈A}
,若M∩N=N,则实数a的取值范围是
[
2
,+∞)
[
2
,+∞)
分析:先求出集合N,然后将条件M∩N=N转化成N⊆M,对a进行分类讨论后建立不等关系,解之即可.
解答:解:∵M∩N=N
∴N⊆M;
∵M={x|-2≤x≤a},N={y|y=
|x|
,x∈A}

当-2≤a<0时,N={y|
a
≤y≤
2
},
则a
2
,此时无解;
当0≤a≤2时,N={y|0≤y≤
2
},
则a
2
,此时
2
≤a≤2;
当a>2时,N={y|0≤y≤
a
},
则a≥
a
⇒a≥1,此时a>2.
综上所述,实数a的取值范围是 [
2
,+∞)

故答案为[
2
,+∞)
点评:本题主要考查了集合的包含关系判断及应用,以及不等式的解法,同时考查了计算能力和分类讨论思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合M={x|2-x>0},N={x|l≤x≤3},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|2-x>0},N={x|x2-4x+3<0},U=R,则(CUM)∩N是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|-2≤x≤2},N={x|x<1},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|-2≤x<2}N={x|x2-2x-3<0},则集合M∩N=
{x|-1<x<2}
{x|-1<x<2}

查看答案和解析>>

同步练习册答案