精英家教网 > 高中数学 > 题目详情

【题目】已知点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0 , y0),且y0<x0+2,则 的取值范围是(
A.[﹣ ,0)
B.(﹣ ,0)
C.(﹣ ,+∞)
D.(﹣∞,﹣ )∪(0,+∞)

【答案】D
【解析】解:∵点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0 , y0), ∴ ,化为x0+3y0+2=0.
又y0<x0+2,
=kOM
当点位于线段AB(不包括端点)时,则kOM>0,当点位于射线BM(不包括端点B)时,kOM<﹣
的取值范围是(﹣∞,﹣ )∪(0,+∞).
故选:D.

【考点精析】通过灵活运用直线的斜率,掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若向量 =(﹣cosB,sinC), =(﹣cosC,﹣sinB),且 . (Ⅰ)求角A的大小;
(Ⅱ)若b+c=4,△ABC的面积 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求 的最小正周期和最大值;
(2)讨论 上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,长方体 中, ,点 是棱 上一点.

(1)当点 上移动时,三棱锥 的体积是否变化?若变化,说明理由;若不变,求这个三棱锥的体积.
(2)当点 上移动时,是否始终有 ,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣6x﹣4y+4=0,点P(6,0).
(1)求过点P且与圆C相切的直线方程l;
(2)若圆M与圆C外切,且与x轴切于点P,求圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,
(Ⅰ)证明: 为奇函数;
(Ⅱ)判断 单调性并证明;
(III)不等式 对于 恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<α<π,sin(π﹣α)+cos(π+α)=m.
(1)当m=1时,求α;
(2)当 时,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2分别是椭圆E:x2+ =1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列. (Ⅰ)求|AB|;
(Ⅱ)若直线l的斜率为1,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|m﹣1≤x≤2m+3},函数f(x)=lg(﹣x2+2x+8)的定义域为B.
(1)当m=2时,求A∪B、(RA)∩B;
(2)若A∩B=A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案