精英家教网 > 高中数学 > 题目详情

【题目】如图,已知平面平面,直线平面,且

1)求证:DA平面

2)若平面,求二面角的余弦值.

【答案】1)见解析;(2

【解析】

1)过点于点,由已知利用面面垂直的性质可得平面,结合平面,得,再由线面平行的判定可得平面

2)由已知证明四边形是矩形,以为坐标原点,分别以所在直线为轴建立空间直角坐标系,设,分别求出平面的一个法向量与平面的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值.

1)证明:过点E于点

∵平面平面,又平面平面平面

平面

又∵平面,∴

平面平面

平面

2平面

又∵,则

∴点的中点,连接,则

平面,则

∴四边形是矩形.

为坐标原点,分别以所在直线为轴建立空间直角坐标系,

,则

设平面的一个法向量为

,得

又平面的一个法向量为

设二面角的平面角为

二面角是钝角,则二面的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

1)讨论函数的单调性;

2)当为自然对数的底数),时,若方程有两个不等实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一幅标准的三角板如图1中,为直角,为直角,,且,把拼齐使两块三角板不共面,连结如图2.

1)若的中点,的中点,求证:平面

2)在《九章算术》中,称四个面都是直角三角形的三棱锥为“鳖臑”,若图2,三棱锥的体积为2,则图2是否为鳖臑?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求过点的切线方程;

(2)当时,求函数的最大值;

(3)证明:当时,不等式对任意均成立(其中为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新能源汽车的春天来了!201835日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自201811日至20201231日,对购置的新能源汽车免征车辆购置税.某人计划于20185月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解了近五个月的实际销量如下表:

月份

2017.12

2018.01

2018.02

2018.03

2018.04

月份编号

1

2

3

4

5

销量(万量)

0.5

0.6

1

1.4

1.7

1)经分析,可用线性回归模型拟合当地该品牌新能源汽车实际销量(万辆)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测20185月份当地该品牌新能源汽车的销量;

22018612日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:

补贴金额预期值区间(万元)

频数

20

60

60

30

20

10

i)求这200位拟购买新能源汽车的消费者对补贴金额的心理预期值的方差及中位数的估计值(同一区间的预期值可用该区间的中点值代替,估计值精确到0.1);

ii)将频率视为概率,现用随机抽样方法从该地区拟购买新能源汽车的所有消费者中随机抽取3人,记被抽取的3人中对补贴金额的心理预期值不低于3万元的人数为,求的分布列及数学期望.

附:①回归直线的斜率和截距的最小二乘估计公式分别为:;②.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191216日,公安部联合阿里巴巴推出的“钱盾反诈机器人”正式上线,当普通民众接到电信网络诈骗电话,公安部钱盾反诈预警系统预警到这一信息后,钱盾反诈机器人即自动拨打潜在受害人的电话予以提醒,来电信息显示为“公安反诈专号”.某法制自媒体通过自媒体调查民众对这一信息的了解程度,从5000多参与调查者中随机抽取200个样本进行统计,得到如下数据:男性不了解这一信息的有50人,了解这一信息的有80人,女性了解这一信息的有40.

1)完成下列列联表,问:能否在犯错误的概率不超过0.01的前提下,认为200个参与调查者是否了解这一信息与性别有关?

了解

不了解

合计

男性

女性

合计

2)该自媒体对200个样本中了解这一信息的调查者按照性别分组,用分层抽样的方法抽取6人,再从这6人中随机抽取3人给予一等奖,另外3人给予二等奖,求一等奖与二等奖获得者都有女性的概率.

附:

P(K2k)

0.01

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,下述四个结论:

是偶函数;

的最小正周期为

的最小值为0

上有3个零点

其中所有正确结论的编号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某景区是一个以为圆心,半径为的圆形区域,道路角,且均和景区边界相切,现要修一条与景区相切的观光木栈道,点分别在上,修建的木栈道与道路围成的三角地块.

1)求修建的木栈道与道路围成的三角地块面积的最小值;

2)若景区中心与木栈道段连线的.

①将木栈道的长度表示为的函数,并指定定义域;

②求出木栈道的长度最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中, 平面的中点 上的点且上的高.

(1)证明: 平面

2)若,求三棱锥的体积;

3)在线段上是否存在这样一点使得平面?若存在,说出点的位置.

查看答案和解析>>

同步练习册答案