精英家教网 > 高中数学 > 题目详情

【题目】高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的高斯函数为:设,用表示不超过x的最大整数,则称为高斯函数,例如:.已知函数,则关于函数的叙述中正确的是(

A.是偶函数B.是奇函数

C.R上是增函数D.的值域是

E.的值域是

【答案】BCE

【解析】

计算得出判断选项A不正确;用函数的奇偶性定义,可证是奇函数,选项B正确;通过分离常数结合复合函数的单调性,可得出R上是增函数,判断选项正确;由的范围,利用不等式的关系,可求出,进而判断选项E正确,选项D不正确,即可求得结果.

根据题意知,.

∴函数既不是奇函数也不是偶函数,A错误;

是奇函数,B正确;

由复合函数的单调性知R上是增函数,C正确;

D错误,E正确.

故选:BCE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前46项和为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了100名魔方爱好者进行调查,得到的部分数据如表所示:已知在全部100人中随机抽取1人抽到喜欢盲拧的概率为

喜欢盲拧

不喜欢盲拧

总计

10

20

总计

100

表(1)

并邀请这100人中的喜欢盲拧的人参加盲拧三阶魔方比赛,其完成时间的频率分布如表所示:

完成时间(分钟)

[0,10)

[10,20)

[20,30)

[30,40]

频率

0.2

0.4

0.3

0.1

表(2)

(Ⅰ)将表(1)补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为是否喜欢盲拧与性别有关?

(Ⅱ)现从表(2)中完成时间在[30,40] 内的人中任意抽取2人对他们的盲拧情况进行视频记录,记完成时间在[30,40]内的甲、乙、丙3人中恰有一人被抽到为事件A,求事件A发生的概率.

(参考公式:,其中

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,值域为(0,+∞)的是(  )

A. y= B. y=

C. y= D. y=x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知mn是不重合的直线,αβ是不重合的平面,有下列命题:mαn∥α,则m∥nm∥αm∥β,则α∥βα∩β=nm∥n,则m∥αm∥βm⊥αm⊥β,则α∥β.其中真命题的个数是(

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=–3x2+2xm+1.

(1)若x=0为函数的一个零点,求m的值;

(2)当m为何值时,函数有两个零点、一个零点、无零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次诗词大会决赛前,甲、乙、丙丁四位选手有机会问鼎冠军,三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:猜测冠军是乙或丁;猜测冠军一定不是丙和丁;猜测冠军是甲或乙。比赛结束后发现,三个人中只有一个人的猜测是正确的,则冠军是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知直线 的参数方程为为参数),曲线的极坐标方程为 .

(1)求曲线的直角坐标方程,并指出该曲线是什么曲线;

(2)若直线 与曲线的交点分别为 ,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数在点处的切线方程是

(1)求实数的值.

(2)若方程有唯一实数解,求实数的值.

查看答案和解析>>

同步练习册答案