精英家教网 > 高中数学 > 题目详情
设函数y=loga|x|在(-∞,0)上单调递增,则f(a+1)与f(a)的大小关系是
 
考点:对数函数的图像与性质
专题:计算题,函数的性质及应用
分析:由复合函数的单调性可知0<a<1;从而由对数函数的单调性判断.
解答: 解:∵函数y=loga|x|在(-∞,0)上单调递增,
又∵y=|x|在(-∞,0)上单调递减,
∴0<a<1;
而f(a+1)=loga(a+1)<0,f(a)=logaa=1;
故f(a+1)<f(a);
故答案为:f(a+1)<f(a).
点评:本题考查了对数函数的单调性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)已知x∈R,a=x2+
1
2
,b=2-x,c=x2
-x+1,试证明a,b,c中至少有一个不小于1.
(Ⅱ)用分析法证明:若a>0,则
a2+
1
a2
+2≥a+
1
a
+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若过定点M(-1,0)且斜率为k的直线与曲线y=
9-(x+2)2
(0<x<1)有交点,则k的取值范围是(  )
A、(0,
5
B、(-
5
,0)
C、(0,
13
D、(0,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn}满足:a1=2,an+1=
1
2
(an+
1
an
).bn=
an+1
an-1
,则数列{bn}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且当x<0时,f(x)=ln
1
1-x
,则函数f(x)的大致图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1+2x

(1)求函数f(x)的定义域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是不共线的两个非零向量,记
OM
=ma,
ON
=nb,
OP
=αa+βb,其中m,n,α,β均为实数,m≠0,n≠0,若M、P、N三点共线,则
α
m
+
β
n
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有(  )
A、36种B、30种
C、24种D、6种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知fx)=-x2+6xcosα-16cosβ,若对任意实数t,均有f(3-cost)≥0,f(1+2-|t|)≤0恒成立.
(1)求证:f(4)≥0,f(2)=0;
(2)求函数f(x)的表达式.

查看答案和解析>>

同步练习册答案