精英家教网 > 高中数学 > 题目详情
3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过双曲线$\frac{x^2}{25}-\frac{y^2}{4}$=1的右顶点且离心率为$\frac{3}{5}$.
(1)求C的方程;
(2)求过点(3,0)且斜率为$\frac{4}{5}$的直线被C所截线段的中点坐标.

分析 (1)求出椭圆的几何量,即可求C的方程;
(2)求出直线方程$y=\frac{4}{5}({x-3})$,代入C的方程,求出A,B坐标,即可确定结论.

解答 解:(1)由题意,a=5,c=3,b=4,
∴C的方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$
(2)过点(3,0)且斜率为$\frac{4}{5}$的直线方程为$y=\frac{4}{5}({x-3})$,
设直线与C的交点为A(x1,y1),B(x2,y2),
将直线方程$y=\frac{4}{5}({x-3})$代入C的方程,得$\frac{x^2}{25}+\frac{{{{({x-3})}^2}}}{25}=1$,
即x2-3x-8=0,解得${x_1}=\frac{{3-\sqrt{41}}}{2}$,${x_2}=\frac{{3+\sqrt{41}}}{2}$,
∴AB的中点坐标$\overline x=\frac{{{x_1}+{x_2}}}{2}=\frac{3}{2}$,$\overline y=\frac{{{y_1}+{y_2}}}{2}=\frac{2}{5}({{x_1}+{x_2}-6})=-\frac{6}{5}$,
即中点为$({\frac{3}{2},-\frac{6}{5}})$.

点评 本题考查椭圆方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设极坐标的极点是直角坐标系的原点,极轴是x轴的正半轴,取相同的单位长度,已知直线1的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,且α≠kπ+$\frac{π}{2}$,k∈z),圆C的极坐标方程为p=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且圆C与直线l不相交.
(I)求直线l的普通方程;
(Ⅱ)设曲线C1的参数方程为$\left\{\begin{array}{l}{x=a}\\{y=-\frac{2}{\sqrt{a}}}\end{array}\right.$ (a为参数),点P在曲线C1上.求点P到直线1距离的最小值及取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平行四边形ABCD中,AC=5,BD=4,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=(  )
A.$\frac{41}{4}$B.-$\frac{41}{4}$C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2x+ax+2.
(1)当a=0时,求函数f(x)的零点;
(2)当a=1时,判断函数f(x)在定义域内的零点的个数并给出代数证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列说法正确的是③④⑤.(只填正确说法序号)
①若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
②y=$\sqrt{x-3}$+$\sqrt{2-x}$是函数解析式;
③y=$\frac{\sqrt{1{-x}^{2}}}{1-|3-x|}$是非奇非偶函数;
④若函数f(x)在(-∞,0],[0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
⑤幂函数y=xα的图象不经过第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在直角三角形SOC中,直角边OC的长为4,SC为斜边,OB⊥SC,现将三角形SOC绕SO旋转一周,若△SOC形成的几何体的体积为V,△SOB形成的体积为$\frac{V}{4}$,则V=$\frac{64π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.

(Ⅰ)在CD上找一点F,使AD∥平面EFB;
(Ⅱ)求三棱锥C-ABC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y={log_2}(5-4x-{x^2})$的递增区间是(  )
A.(-∞,2]B.(-5,-2]C.[-2,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在边长为1的正方体ABCD-A1B1C1D1中,O、E分别是A1C、BC的中点,P是线段A1O上一动点.
(1)求直线PA1与平面AB1P所成角的正弦的取值范围;
(2)当直线PA1与平面AB1P所成的角最大时,在平面A1CD上是否存在一点Q,使得点Q同时满足下列两个条件:①EQ⊥AP;②|D1Q|=$\frac{\sqrt{5}}{2}$,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案