【题目】设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形.
(1)求椭圆的方程和“相关圆”的方程;
(2)过“相关圆”上任意一点的直线与椭圆交于两点.为坐标原点,若,证明原点到直线的距离是定值,并求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知平面上动点P到定点的距离比P到直线的距离大1.记动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点的直线交曲线C于A、B两点,点A关于x轴的对称点是D,证明:直线恒过点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】黄金分割比例具有严格的比例性,艺术性,和谐性,蕴含着丰富的美学价值.这一比值能够引起人们的美感,被称为是建筑和艺术中最理想的比例.我们把离心率的椭圆称为“黄金椭圆”,则以下四种说法中正确的个数为( )
①椭圆是“黄金椭圆;
②若椭圆,的右焦点且满足,则该椭圆为“黄金椭圆”;
③设椭圆,的左焦点为F,上顶点为B,右顶点为A,若,则该椭圆为“黄金椭圆”;
④设椭圆,,的左右顶点分别A,B,左右焦点分别是,,若,,成等比数列,则该椭圆为“黄金椭圆”;
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若 表示从左到右依次排列的9盏灯,现制定开灯与关灯的规则如下:
(1)对一盏灯进行开灯或关灯一次叫做一次操作;
(2)灯在任何情况下都可以进行一次操作;对任意的,要求灯的左边有且只有灯是开灯状态时才可以对灯进行一次操作.如果所有灯都处于开灯状态,那么要把灯关闭最少需要_____次操作;如果除灯外,其余8盏灯都处于开灯状态,那么要使所有灯都开着最少需要_____次操作.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(多选)已知函数,其中正确结论的是( )
A.当时,函数有最大值.
B.对于任意的,函数一定存在最小值.
C.对于任意的,函数是上的增函数.
D.对于任意的,都有函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,椭圆:经过点.
(1)求椭圆的标准方程;
(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于,两个相异点,证明:面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x=20,则输出的结果为( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点,直线与y轴交于点P.且与椭圆交于A,B两点.A为椭圆的右顶点,B在x轴上的射影恰为。
(1)求椭圆E的方程;
(2)M为椭圆E在第一象限部分上一点,直线MP与椭圆交于另一点N,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将边长为的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列四个命题:①;②异面直线与所成的角为;③二面角余弦值为;④三棱锥的体积是.其中正确命题的序号是___________.(写出所有正确命题的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com