精英家教网 > 高中数学 > 题目详情

设函数对任意,都有,当时, 
(1)求证:是奇函数;
(2)试问:在时 是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式

(1)详见解析;(2)函数最大值为;(3)①,则解为;②,则解为;③,则无解.

解析试题分析:(1)要证明为奇函数,需要证明.如何利用所给条件变出这样一个等式来?
为了产生,令,则.这时的等于0吗?如何求?再设可得,从而问题得证.
(2)一个连续函数在闭区间上必最大值的最小值.为了求函数的最值,就需要研究函数的单调性.研究单调性,第一,根据定义,第二利用导数.抽象函数研究单调性只能用定义.任取,则,根据条件可得:
所以为减函数,那么函数在上的最大值为.
(3)有关抽象函数的不等式,都是利用单调性去掉.首先要将不等式化为,注意必须是左右各一项.在本题中,由题设可得在R上为减函数
,即.下面就解这个不等式.这个不等式中含有参数,故需要分情况讨论.
试题解析:(1)设可得,设,则
所以为奇函数.
(2)任取,则,又
所以
所以为减函数。
那么函数最大值为
所以函数最大值为.
(3)由题设可知

可化为
在R上为减函数
,即
,则解为
,则解为
,则无解
考点:1、抽象函数;2、函数的性质;3、解不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;
(3)若,且对任意的,都存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=|2x-1|+|2x-3|,x∈R
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.
(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,指出的单调递减区间和奇偶性(不需说明理由);
(2)当时,求函数的零点;
(3)若对任何不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且(1)判断函数的奇偶性;(2)判断上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在区间上是增函数.
(1)求实数的值组成的集合
(2)设关于的方程的两个非零实根为.试问:是否存在实数,使得不等式对任意 恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

上最大值是5,最小值是2,若,在上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在[-3,3]上的奇函数,且当x∈[0,3]时,f(x)=x|x-2|

⑴在平面直角坐标系中,画出函数f(x)的图象
⑵根据图象,写出f(x)的单调增区间,同时写出函数的值域.

查看答案和解析>>

同步练习册答案