设函数对任意,都有,当时,
(1)求证:是奇函数;
(2)试问:在时 ,是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式
(1)详见解析;(2)函数最大值为;(3)①,则解为;②,则解为;③,则无解.
解析试题分析:(1)要证明为奇函数,需要证明.如何利用所给条件变出这样一个等式来?
为了产生,令,则.这时的等于0吗?如何求?再设可得,从而问题得证.
(2)一个连续函数在闭区间上必最大值的最小值.为了求函数的最值,就需要研究函数的单调性.研究单调性,第一,根据定义,第二利用导数.抽象函数研究单调性只能用定义.任取,则,根据条件可得:即
所以为减函数,那么函数在上的最大值为.
(3)有关抽象函数的不等式,都是利用单调性去掉.首先要将不等式化为,注意必须是左右各一项.在本题中,由题设可得,在R上为减函数
,即.下面就解这个不等式.这个不等式中含有参数,故需要分情况讨论.
试题解析:(1)设可得,设,则
所以为奇函数.
(2)任取,则,又
所以
所以为减函数。
那么函数最大值为,,
所以函数最大值为.
(3)由题设可知
即
可化为
即,在R上为减函数
,即,
①,则解为
②,则解为
③,则无解
考点:1、抽象函数;2、函数的性质;3、解不等式.
科目:高中数学 来源: 题型:解答题
已知函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;
(3)若,且对任意的,都存在,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.
(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在区间上是增函数.
(1)求实数的值组成的集合;
(2)设关于的方程的两个非零实根为、.试问:是否存在实数,使得不等式对任意及 恒成立?若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)是定义在[-3,3]上的奇函数,且当x∈[0,3]时,f(x)=x|x-2|
⑴在平面直角坐标系中,画出函数f(x)的图象
⑵根据图象,写出f(x)的单调增区间,同时写出函数的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com